DIVE&CLEAN - Intervention Possible
The DIVE&CLEAN project is an educational and innovative initiative aimed at addressing a significant environmental challenge: marine pollution. With oceans covering over 70% of the Earth’s surface and providing a home to 50–80% of life on the planet, their health is critical. However, marine ecosystems are under threat due to plastic pollution, which impacts wildlife, coastal communities, and global biodiversity. This project centers around the idea of introducing underwater trash bins, especially in areas frequented by recreational divers. While most divers explore the seas without specific tools to collect trash, they could contribute significantly with the right infrastructure. The vision of DIVE&CLEAN is to inspire behavioral change, encourage collaboration, and promote actionable solutions to reduce ocean pollution. Using interactive robotics and storytelling, the project tells the story of divers rescuing animals entangled in plastic and collecting trash from the ocean floor using underwater bins. Through creative performances, it seeks to educate and motivate individuals, resorts, and authorities to adopt sustainable practices.
Application of Carbon Aerogels in Lithium-Air Batteries
One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.