全國中小學科展

四等獎

Development of a neurointerface glove with tactile feedback

Research Question or Engineering Problem A stroke continues to be the most important medical and social problem of the modern world. Stroke is a type of acute cerebrovascular accident (ACVA) and is characterised by a sudden (within minutes, less often - hours) appearance of focal neurological symptoms (motor, speech, sensory, coordinating, visual and other disorders) and / or general brain disorders (depression of consciousness, headache, vomiting, etc.) that persist for more than 24 hours or lead to death of the patient in a short period of time due to a cause of cerebrovascular origin. There are two clinical and pathogenetic forms of stroke: ishemic stroke (cerebral infarction) is caused by acute focal cerebral ischemia, leading to infarction (zone of ischemic necrosis) of the brain; hemorrhagic stroke (non-traumatic intracerebral hemorrhage) is caused by rupture of an intracerebral vessel and blood penetration into the brain parenchyma or rupture of an arterial aneurysm with subarachnoid hemorrhage (SAH). ACVA also includes transient disorders of cerebral circulation, characterised by the sudden occurrence of focal neurological symptoms that develop in a patient with cardiovascular disease (arterial hypertension, atherosclerosis, atrial fibrillation, vasculitis, etc.), last for several minutes, less often hours, but no more than 24 hours, and ends with a full restoration of the impaired brain functions. Transient disorders of cerebral circulation include: transient ischemic attack (TIA), which develops as a result of short-term local cerebral ischemia and is characterised by sudden transient neurological disorders with focal symptoms; hypertensive cerebral emergency, which is a condition associated with an acute (usually significant) rise in blood pressure (BP) and accompanied by the appearance of general cerebral (less often focal) neurological symptoms secondary to hypertension. The most severe form of hypertensive crisis is acute hypertensive encephalopathy, the basis of pathogenesis of which is cerebral edema. Cerebral infarction generally is the result of the interaction of many etiopathogenetic factors, which can be subdivided into local and systemic ones. Local factors include: morphological changes in the brachiocephalic or intracerebral arteries (pathological tortuosity, etc.), atherosclerotic lesions of the vessels of the aortic arch and cerebral arteries, cardiac lesions as a source of thromboembolic cerebral infarctions, fibromuscular dysplasias of the walls of the brachiocephalic and cerebral arteries, brachiocephalic artery dissection, vasculitis (arteritis), changes in the cervical spine with the formation of extravasal compression of the vertebral arteries, anomalies in the structure of the vessels of the neck and brain (hypoplasia of the vertebral artery, trifurcation of the internal carotid artery), etc. Systemic factors include: disorders of central and cerebral hemodynamics (a sharp change in BP or a decrease in cardiac output, etc.), hereditary and acquired coagulopathies, polycythemia, certain forms of leukemia, hypovolemia, psychoemotional stress / distress, etc., hypercoagulative / hyperaggregatory side effects of a number of medications (oral contraceptives, etc.). In the 俄羅斯n Federation, more than 500 thousand people have a stroke every year. About 25,000 new cases of stroke occur in St. Petersburg every year. The incidence of stroke in the 俄羅斯n Federation is 3.48 ± 0.21 cases per 1000 people. The incidence of various types of ACVA varies widely, in particular, cerebral infarctions account for 65–75%, hemorrhages (including subarachnoid hemorrhages) – 15–20%, transient cerebral circulation disorders account for 10–15%. The frequency of cerebral strokes in the population over 50–55 years old increases by 1.8–2 times in each subsequent decade of life. Medical and socio-economic consequences of ACVA are very significant, in particular, death in the acute period of stroke occurs in 34.6% cases, during the first year after the end of the acute period in 13.4% cases; severe disability with the need for constant care is present in 20.0% of stroke patients; 56.0% have limited working capacity and only 8.0% return to their previous work activity. Disability due to stroke (the national average is 56–81%) in our country ranks first among all causes of primary disability, amounting to 3.2 per 10 thousand people. Stroke mortality among working-age population has increased in the 俄羅斯n Federation by more than 30% over the past 10 years. The annual death rate from stroke in our country is 175 per 100 thousand people. Stroke annually becomes the main cause of disability: 85% of victims experience a decrease in strength or a complete lack of ability to control the muscles of half of the body and only half of them recover limb functions partially or completely; the rest of those who have suffered a stroke remain paralysed and require care, since they are not able to completely independent existence. In this regard, recently, in the process of rehabilitation, the technology of brain-computer interfaces (BCI) has begun to be actively used. on the basis of this technology exercise machines are created. These exercise machines are controlled directly by the patient himself. This feature of the technology increases the effect of the procedure by providing a direct connection between the patient's desire and effort with the work of the simulator. The greatest development of this technology is observed in the field of medicine, where BCIs are used as a means of communication or as one of the tools of neurorehabilitation. In this regard, it seems very promising to develop the most optimal brain-computer interfaces. The goal of our project was to create an automated training complex in the form of a neuro-controlled glove with tactile feedback, designed to simplify access to rehabilitation means.

Synthesis of Biodegradable Plastic From Food Waste

Based on NEA Waste Statistics and Overall Recycling Rate for 2017, 809,800 tonnes of food waste and 815,200 tonnes of plastic waste was generated. Both food waste and plastic waste account for more than 10% of the total waste generated in Singapore in 2017 respectively. However only 16% of the food waste and 6% of plastic waste was recycled, the rest of it was disposed at the incineration plants and then the landfill. Such action will eventually lead to 2 major environmental issues that Singapore will face in near future: 1)Semakau landfill is our only landfill left and it is expected to run out of space in near future 2)The burning of food waste results in the release of methane (CH4), a greenhouse gas that has over 25 times the impact in trapping excess heat in the atmosphere as compared to Carbon Dioxide (CO2). This will increase carbon footprint and contribute to greenhouse effect and global warming in due course. According to the Sustainable Singapore Blueprint 2015, Singapore is working towards becoming a Zero Waste Nation by reducing our consumption, reusing and recycling all materials. A national recycling rate target of 70% has been set for 2030 with an aim to increase domestic recycling rate from 20% in 2013 to 30% by 2030 and non-domestic recycling rate from 77% in 2013 to 81% by 2030. As part of our total commitment towards waste management and sustainability effort, the purpose of doing this research project is to investigate whether food waste can be recycled and made into biodegradable plastics. First of all, chitosan will be derived from shrimp shells and be dissolved in acetic acid and lactic acid produced by probiotic fermentation of fruit and/ or vegetable waste for synthesis of biodegradable plastics.

以農業廢棄物芝麻稈做為紡織業常用染劑吸附材質之探討

本研究的重點是使用芝麻稈作為高效的吸附材,進而從水溶液中去除在染紡工業上常用的亞甲藍、剛果紅及雅里西安藍。在研究中,我們分別以吸附時間、pH值、吸附起始濃度作為操作變因,研究其物理、化學參數如吸附率、移除量、反應級數、吸附模式等等之變化[1][5]。使用UV-Vis光譜儀製作檢量線,推算各條件下所得之剩餘濃度,並由此計算其他所需之參數。本研究使用pseudo-first-order及pseudo-second-order進行動力學之分析,我們可以發現芝麻稈對於亞甲藍[3][4][5]、剛果紅[2]及雅里西安藍之吸附均符合pseudo-second-order模型;最佳吸附pH分析則可得知,亞甲藍於pH=5、剛果紅於pH=7,雅里西安藍於pH=8下可得最佳吸附效果;如使用恆溫吸附模型分析其吸附行為,則由實驗結果我們可以得知:亞甲藍符合Langmuir Isotherm及Freundlich Isotherm、剛果紅符合Langmuir Isotherm、雅里西安藍則符合Freundlich Isotherm;而其最大吸附量分別高達每克吸附材可吸附6624.75毫克亞甲藍、10815.74毫克剛果紅或18574.4毫克雅里西安藍。

四角垛彩球遊戲研究

四角垛是「底層是邊長為n顆球的正方形,其上層在每顆球的中間排成邊長為n顆球的正方形,依此方式堆疊至最上層是邊長為n顆的正方形」。 本文主要探討的問題為:當四角垛最底層彩球用紅藍綠三種彩球擺定,上層每顆球的顏色由其下層所接觸的四顆彩球依照給定之規則來決定其顏色(紅或藍或綠),那四角垛最頂層那顆球的顏色為何?我們透過數學建模將此問題轉換為 的矩陣問題來解決,並得到如何最快求得答案的方法。另外,透過矩陣的可逆性與否我們可以判斷當給定四角垛哪些位置彩球的顏色後,即可推得四角垛中每顆彩球的顏色。

Utilizing Computer Vision And Machine Learning Algorithms To Control Smart Systems Helping Physically Disabled People.

About 15% of the world's population lives with some form of disability, of whom 2-4% experience significant difficulties in functioning. The global disability prevalence is higher than previous WHO estimates, which date from the 1970s and suggested a figure of around 10%. This global estimate for disability is on the rise due to population ageing and the rapid spread of chronic diseases, as well as improvements in the methodologies used to measure disability. This research deals specifically with the physically disabled and often people with physical disabilities feel frustrated because they cannot do activities such as: playing sports and doing exercise. Having a physical disability also changes the way a person lives their life. They may find their life changes and activities they had previously included as part of their daily routine such as brushing their teeth, washing and doing household chores suddenly become a huge effort and many people require another person's help to carry out these activities. Also, they suffer from three basic challenges like; education, economic and, communication. Firstly, Education: The results of the investigation revealed that the physically handicapped. They face a lot of problems while studying they can't learn as the normal ones and they needs someone to help in learning. Secondly, Economic: they can't work and achieve income to help in his practical life. And finally Communication: they can't communicate with others because of his disability.

The Waves Fish Controller

Our oceans, coasts, and estuaries are home to diverse living things. These organisms take many forms, from the tiniest single-celled plankton to the largest animal on Earth, the blue whale. Understanding the life cycles, habits, habitats, and inter-relationships of marine life contributes to our understanding of the planet as a whole. Human influence and reliance on these species, as well as changing environmental conditions, will determine the future health of these marine inhabitants Humans influence the whole environment even if they don’t notice , the growth of men and our increasing reproduction over the years results to an over consumption of nutritious products , which makes us exploit the wildlife more and more and in the same time take parts of its habitats for us to life in and throwing our non-needed materials in what’s left of the world. And that’s a big problem because the Eco-System was just fine before we started over exploiting it in a greedy and unreasonable manner, and since the ecosystem’s parts are related altogether in an ongoing circle , the absence or the destruction of one part of It may lead to the unbalance and even destruction of the whole organized system. And that’s why as humans, it is our first duty to take care of nature generally and both fauna and flora specifically, not because of a moral code of some kind; but to protect Humanity from ourselves, and to preserve the human kind from destruction and extinction. And that’s the main goal of our project, that’s to help us organize our fishing exploitative activities with how much can the environment handle from it.

以深度學習及動脈壓力波頻譜諧波分析實驗為基礎開發脈搏訊號分析系統

本研究提出一套創新的人體健康分析方式,透過全新的分析演算法架構深度解析脈搏訊號中的特徵,並結合深度神經網路進行預測,最後開發成監測人體健康的嵌入式系統。本研究基於血液共振理論,將光體積變化描計圖法擷取到的脈搏訊號進行訊號處理,從中擷取出共振峰值以及其變化量,檢測血液循環一週的微小變化,改善了當前分析方法著重在計算平均值,無法呈現即時狀態的缺失。本研究提出的系統和演算法所延伸的預警系統具有77.3%的預測精準度,同時可以擴展至多種趨勢相關的臨床症狀。此外,本系統十分適合應用於低功耗、低成本的硬體,對於未來各種行動裝置、穿戴科技與居家照護的生理數據分析需求,可提供實質的貢獻。

微量氧化亞錫參雜與氧化鎢光觸媒之光電催化性質探討

太陽能是地球上最豐富的能源。我們這裡研究的光催化劑主要用於進行重要的化學反應,例如利用陽光進行污染物降解和製氫。光催化劑的靈敏度取決於半導體材料的組成。在這項研究中,提出了一種氧化錫和氧化鎢的錫(II)光催化劑(SnO-WO3或SnO2 / WO3)與p-n結半導體材料結合。我們發現重要的事實是,含有少量SnO2和WO3的光催化劑展示了敏感的光催化活性。使用光纖的掃描電化學顯微鏡(SECM)快速篩選SnO2-WO3光催化劑陣列以進行有效的光電化學反應,我們使用小於10%的SnO2量摻雜WO3。然後在0V vs.Ag/AgCl的條件下,我們發現在紫外線和可見光照射下,組合物中3:97 SnO2 / WO3的微小比例能夠顯示出最高的光電流。利用第一原理(DFT)計算,我們得到了接近費米能中SnO2的帶隙約為1.40 eV。我們認為這種小的帶隙和費米能級附近的態密度(DOS)分布是SnO2對n型WO3敏感的原因。

利用VAE-pix2pix生成擬真的山脈模型

本研究利用NASA的SRTM 1 Arc-Second資料集來收集全球各地的地形高度圖(heightmap),也利用MapTiler網站收集相對應的衛星空照圖,用這些收集的圖像,訓練我們建構的VAE-pix2pix模型。VAE-pix2pix為Variational Autoencoder (VAE)及pix2pix (為一個Conditional Generative Adversarial Network)結合的模型,能將人工繪製的高度圖加上真實山脈應有的細節(包含尖銳的山脊、山壁上的紋路、連續的河流網路等……),並生成出相對應的擬真衛星空照圖。相較於原pix2pix模型,VAE-pix2pix所生成的高度圖及衛星空照圖會更接近於真實世界的地形高度圖及衛星空照圖,同時VAE-pix2pix模型也能透過改變latent code的數值來生成出不同風格的高度圖及空照圖,如地貌的顏色或雪線的高度等,這些都增加模型生成圖像的多樣性。為了使我們建構的模型能更廣泛的被應用,我們在Unity上開發了Unity客戶端,其生成的mesh可以讓使用者直接應用於遊戲的場景,簡化了遊戲中生成擬真山脈模型的任務。

剛性三角形的進一步探討

本文企圖將公認的剛性△區分為軟和硬△,軟硬△定義如下:「若給定△的每一內角都不存在比分角線能多切一點點的塞瓦線,則此△被稱為硬△,否則為軟△。」文中推出兩項主要結論,(一) 若等腰△的頂角角度在36度及771/7度之間則為硬△,否則為軟△。(二) 一般△(非等腰△)三內角角度若都在45度及75度之間則為硬△,否則為軟△。明顯看得出來,任何鈍角及直角△都是軟△,只有部分銳角△才有機會是硬△。文章最艱難的部分是在18種擺放方式中,將僅存的七種成功擺放方式的臨界點都找出來,藉著臨界點的位置條件將∠B最大及最小範圍和∠A角度的關係式導出,作為可否多切一點點的依據,∠B的最大值和最小值曲線兩者之間空隙表示在定值∠A下,∠B取角的容許範圍,其越大越容易舉例。在七個可成功塞入的臨界點擺放圖的尺規作圖中,有幾個非常困難,文中利用圓錐曲線幫忙定位,簡化作圖難度。