極速骨牌-骨牌終端速度及鏈鎖反應機制之探討
本研究主要在探討骨牌脈波在傳遞時的速度變化,並比較在不同的骨牌和不同的排列方式下骨牌的終端速度有何種差異;同時也研究骨牌在鏈鎖反應下能量的放大現象。觀察後發現單列骨牌脈波在傳遞一段距離後,由於空氣阻力的影響,脈波將會達到一終端速度,此終端速度與骨牌高度成反比,而與骨牌質量平方成正比。骨牌的脈波傳遞在鏈鎖反應下仍有一終端速度,但大於單列之骨牌脈波速,且鏈鎖反應具有放大推力之功能。由我們的研究可預測一列物體傾倒時所花費時間和所能達到之終端速度,而鏈鎖反應可比擬為一雷射模型能量集中和釋放的機制,相信可利用骨牌儲存能量的機制應用於需迅速釋能的機械中 This research is mainly discussing the changing of velocity of a domino pulse, and comparing the terminal velocity of various kinds of dominos and arresting modules. Also we focus on the energy-enlarging fact of chain-reaction of domino series. We found that after running a distance, the pulse of a single-series domino will finally reach a terminal velocity by the friction force of air. The terminal velocity will inversely proportion to the height of a single domino, and will proportion to the square of mass of a single domino. During a chain-reaction, the pulse still has a terminal velocity, but it is higher than the terminal velocity of a single series domino .The chain-reaction has an ability to enlarge the original force, too. By the research, we are able to predict the time interval and the terminal velocity while a series of objects are falling. On the other hand, the chain reaction is similar with mechanism of energy concentration and emission of LASER. We also believe that this mechanism is able to explain and apply to those machines which need to release energy rapidly.
攀蜥,攀棲-由台北市內湖金面山區生態因子分析夜晚黃口攀蜥之停棲策略
For this research, the nocturnal perching habits of the lizard, Japalura Polygonata Xantbostona, were examined. Nighttime observations were made from July 2002 to March 2003 in the area along the mountain brook in the south valley of the King-Mien Mountain in Nei-Hu District. The study comprised a series of analysis with discussion of the lizard’s (Japalura Polygonata Xantbostona) perch based on the temperature of living environment and the manner of perch including the dissimilarity between male and female, adults and juvenile lizards in selecting their perch conditions. During the period of study 452 lizards were marked and examined. 163 were female, 168 were male, and 121 were young lizards. The study considered four particulars: (1) orientation, (2) angle, (3) manner of perch, and (4) height of the perch above ground. As for the orientation, most of the lizards chose to perch in an inward (towards the tree) and in an upward direction; the angle of perch was mainly within 1°~ 45° and slanted to 180°. Second, the manner of perch chosen by most of the lizards was holding the stem or trunk by arms. All four groups of lizards exhibited no difference in the orientation, angle and manner of perch. However, male lizards tended to perch at a greater height above ground than the female and juvenile lizards did. The study produced other findings as well: A tendency correlation curve was plotted showing that temperature related with the number of lizards taking perch, and from the curve the optimal temperature of the living environment was determined to be approximately within the range of 19° ~24°. Additionally, there was a relationship between temperature of living environment and the size of lizard and the number of lizards taking perch. A further positive relationship was observed between temperature and the height of perch above ground. Also, the study showed an apparent positive relationship between the temperature of sample living area and the snout-vent length(SVL) of the lizard. Finally, the Japalura Polygonata Xantbostona tended to take their nocturnal perches within a rather fixed home range. 本研究由2002 年7 月至2003 年3 月,於臺北市內湖區金面山南麓溪谷進行黃口攀蜥夜 晚停棲策略研究,以溫度和各項停棲行為進行來分析探討,包括黃口攀蜥的成幼蜥、雌雄蜥 停棲選擇上的差異。 研究期間,共標記到452 隻攀蜥,其中雌蜥163 隻、雄蜥168 隻、幼蜥121 隻。將停棲 的情況分為方向、角度、停棲型態、離地高度四項來分析,在方向上多以朝內、向上為主; 角度多以小角度的1°~45°及180°為主;在停棲型式多以環抱莖枝為主。進一步分析成幼蜥、 雌雄蜥不論在方向、角度、停棲型式的選擇上皆無差異。離地高度的部分則以成蜥及雄蜥的 停棲高度較高;以溫度分析黃口攀蜥的成幼蜥出現停棲隻次、停棲高度、出現停棲攀蜥體型 的相關性,溫度對出現停棲隻次可以做出趨勢相關曲線,估算攀蜥的停棲有一最適宜溫度範 圍約在19~24℃間;溫度與其停棲高度呈現正相關性;每次測得樣區溫度與出現停棲攀蜥平 均吻肛長有顯著的正相關。而黃口攀蜥夜晚婷棲時則會傾向於較固定的範圍內。
線鋁之情-以陽極氧化鋁模板製作氧化亞銅奈米線
我們使用陽極氧化鋁(AAO)模板來製備銅及其氧化物的奈米線。以硫酸銅和乳酸配製電鍍液,利用氫氧化鈉水溶液(NaOH)將其pH 值調整到12,供以不同電壓,可電鍍出銅及氧化亞銅奈米線。在較高電壓下可製備出銅奈米線,而在較低電壓下可製成氧化亞銅奈米線,若使用中間電壓則能製得銅及氧化亞銅的混合態。利用x 光繞射分析儀(XRD)來分析其結晶構造、使用場發射掃描式電子顯微鏡(SEM)以得知其表面形貌。電鍍出的奈米線直徑約60 nm。奈米線的長度可藉由調整電鍍時間或電壓來控制。在製作IC 內部導線方面,銅奈米線深具開發潛能;在提升太陽能電池的轉換效率、製作可見光光觸媒方面,氧化亞銅奈米線極具前瞻性。We electrodeposited copper and cuprous oxide (Cu2O) nanowires with anodic aluminum oxide (AAO) templates. Both Cu and Cu2O nanowires could be prepared with an alkaline cupric lactate solution, which was adjusted to pH 12 using a 6 M NaOH, when supplied with different electrolytic voltages. Cu nanowires could be prepared when a higher voltage was supplied, and Cu2O nanowires could be prepared with a lower voltage. A mixture of Cu and Cu2O nanowires could be prepared with a supply of a voltage in between. X-ray diffraction (XRD) is used to determine the phase composition, and scanning electron microscopy (SEM) is employed to characterize the morphology of the nanowires. The length of nanowires can be controlled by adjusting the time spent on electrodeposition and the voltage supplied. The resultant diameter of the nanowires was about 60 nm. Cu nanowires are promising materials for making the conductive wires in IC, and Cu2O nanowires hold great promise for improving the conversion efficiency of solar cells and manufacturing visible-light photocatalyst.
環境因子影響美洲蜚蠊觸角擺動模式之研究
本研究以攝影紀錄的方式,透過電腦進行影像分析,記錄不同刺激下美洲蜚蠊(Periplaneta americana)的觸角擺動模式,計算出各項觸角運動的參數,以瞭解光線(光刺激或光適應)、震動刺激、喝水與進食對其觸角行為的影響。我們發現在不同因子的刺激下,觸角擺動的模式具有差異,若兩種不同的刺激同時發生,蜚蠊觸角的行為亦具整合性的反應。蜚蠊於不同狀態下(如喝水或進食),對相同的刺激有不同的反應,證明蜚蠊觸角的行為模式,受環境因子與個體狀態調節。透過掃瞄式電子顯微鏡的觀察,也發現觸角具多種感覺毛,且雌雄的感覺毛的分佈與數量具有差異。綜合以上發現,證明觸角除了為敏感的受器,亦為能反映出生理與環境狀態的動器,同時也適合進行發展檢測器的仿生學應用,用來檢測環境中物理及化學因子。The aim of this study is to investigate the different swing motion modes of antennae of American cockroach (Periplaneta americana) by computer-aided Imaging Analysis. The parameters of each swing movement were calculated in order to analyze how light (including light stimulation or light adaptation), vibration, food and drinking water may affect the antennae behavior of American cockroach. It was found that the antennae swing motion modes were significantly different under different types of stimulus. If two different types of stimulus occurred at the same time, the reactions of antennae motion may become conformable. Under different environmental conditions (such as food or water), same stimulus may result in different reactions. The antennae behavior has shown to be significantly affected by environmental conditions and individual physiological status. Through the observation with scanning electron microscope (SEM), it was found that the antennae has many types of sensilla; and the distribution and quantity of these sensilla are significant different between sexes. In conclusion, not only the antennae are considered as the sensitive receptors, but also they are the important effectors to reflect physiological status and environmental conditions. The current model is suitable for the development of specific detectors in the applications of Bionics to detect the physical and chemical factors in certain environments.
Parallelize it! 運算分享與系統自我校調
The research is about the optimal on parallel processing. Through boot disk – which will automatically finish booting configuration, .it is efficient and quick to build high performance PC clusters. The advantage of parallel computing could be applied to massive image processing. By sharing processing and breaking huge processing load into lots of pieces, we could get more efficient result. It is also possible to optimal parallel system through some special means such as dynamic configuration. Through the means, the system could distribute work loading itself. It could also adjust itself to get the highest performance and the most stable environment. 本研究之目的在於探討平行處理中的計算資源的最佳化,透過自動完成開機設定的Boot Disk 來有效快速建製出高效率的PC Clusters 環境,並透過動態配置與類神經網路的校調,使整體叢集的運算能自動調整至最佳化。平行處理優勢,可以應用在耗費極大量的運算資源的影像處理上。透過運算資源分享,可以以很高的效率將極為龐大的運算工作分散成許多較小的程序,使影像處理速度加快。經由平行演算法及實際應用的調整,可對已成形之平行系統作效能上的加強。使用類神經網路的方式訓練,使其系統能夠自我分配運算工作量,且隨著各平行化程式與各節點的不同,能自我校調至最佳化,達到高效率且穩定的運算環境。\r 本研究透過高效率且能自我調校的運算環境,可用於優化其本身結構,以達到\r 演化出更進一步系統,具有相當大的發展潛力。
半屏山之簷下姬鬼蛛的研究
The spiders, Neoscona nautica, often appear in groups, but individuals have their own sense of territory.They usually spin webs among branches during 6:00~ 8:00 in the evening. When building webs, they will first start with bridges and then spin Y-shaped spokes. Next, they spin meshe of net, silk frame, spokes, spirals and free-zone in order. After finishing webs, they will wait for prey on the free-zone or meshe of net. If they find something inanimate on the web, they will break the spiral attached with the inanimate object that is later removed. If the meshe of net is broken, they will fix it immediately. For them, the time to take webs back is during 2:30~ 6:00 in the morning. Most time they use the first pair and the second pair of legs to take webs back and swallow the webs. Sometimes, they break the spirals by the last pair of legs. The sequence to take webs back is : lower right section, lower middle section, lower left section, upper left section, and upper right section. At last, one thread of bridge will be left. Every early mornings they take webs back and swallow them. The next evening they rebuild webs. Possibly there are two reasons to explain why spiders eat their webs: (1).They swallow webs to get protein. (2).The web threads are easily polluted by dust and humidity and reduce stickiness. The web may also reduce the probability of capturing prey. The body length of them is not related to effective web dimensions. However, the web sizes depend on the width of web-building location. The study shows linear relation among body length, meshe of net and dimensions of free-zone. The linear relation represents that the meshe of net and free-zone have ecological or survival meaning for them. We expect that this study of Neoscona nautica can be helpful to build spider ecological database in Taiwan.簷下姬鬼蛛常成群出現,但個體卻有很強的領域性;常於下午6:00 至8:00 結網於樹枝間,結網時,先以橋絲為出發,織出一Y 形的縱絲,再由此依序織出中空網眼、絲框、縱絲、橫絲、棲息圈,網結好後,簷下姬鬼蛛則在棲息圈或網眼靜候獵物,若發現網上有非生物之異物,則將黏住異物的橫絲弄斷,再把網上的異物丟棄;若網眼被破壞,則會立即修補。收網時間為凌晨2:30 至凌晨6:00,收網時,大部分由第一、二對步足進行收網,偶爾會用最後一對步足將橫絲弄斷,一邊收網一邊將網吞食,收網的順序為:右下、中下、左下、左上、右上,最後留下一條橋絲。簷下姬鬼蛛每天清晨都會收網,並將網吃掉,翌日傍晚再重新結網,其可能原因有兩點:(1)將網吃掉以補充蛋白質。(2)蛛絲容易受灰塵、水氣之污染而減小黏性,降低獵捕功效。簷下姬鬼蛛體長與有效網面積無關,但網的大小視其結網地點寬敞程度而定。體長與網眼、棲息圈面積呈線性關係,表示網眼和棲息圈對簷下姬鬼蛛具有生態或生存意義。我們對簷下姬鬼蛛生態調查之結果,希望能幫助台灣的蜘蛛生態資料庫之建立。