全國中小學科展

化學

Recovering bioethanol from fruit wastes

1. Purpose of the research: Recovering bioethanol from fruit wastes by using brewing yeast and enzyme Viscozyme L\r 2. Procedures: Four different experiments were conducted in our project.\r Experiment-1: Samples in RM by the addition of only S.Cerevisia.\r Experiment-2: Samples in RM broth meduim by the addtion of 100 μl/g ViscozymeL and S. Cerevisiae\r Experiment-3 : ViscozymeL with different concentration\r Experiment-4: to determenine whether the enzyme with high concentration inhibited the fermentation.\r Analysis of ethanol: HPLC method was used for the analysis;\r HPLC method: (high performance liquid chromatography)\r 3. Data\r HPLC measured initial and final concentrations of glucose and ethanol by the addtion of S. Cerevisiae.\r Initial glucose concentration and final ethanol concentration was the highest in Grape pulp 12 and 9 g/L respectively. Despite the glucose concentration was the lowest, the ethanol concentration was quite high (7 g/L) in the mixture with orange. The lowest ethanol was produced in the mixture with pomegranate.\r Concentrations of ethanol and glucose from the samples in RM broth meduim by the addtion of 100 μl/g ViscozymeL and S. Cerevisiae\r After the 24 hour incubation by the addition of enzyme glucose concentration incresed by 1, 4 and 2 respectively in sample 1, 2 and 3. The ethanol concentrations in comparison to first experiment were higher especially in the sample1 (grape pulp).\r Effect of ViscozymeL with different concentration on glucose production.\r The glucose concentration generally increased by the addition of 200 micro L of enzyme as the time proceeded. In grape pulp sample glucose concentartion didnt increased by the addition of 500 micro L enzyme.\r The remaning glucose and produced ethanol concentrations by the addition of viscozyme L with two different concentartion and S. Cerevisiae\r As the concentartion of enzyme added incresed the amout of ethanol also inreased in sample 2 and 3 but in the sample 3 the fermentation was inhibited.\r 4. Conclusions\r In this study sugars in fruit wastes that are regularly not recylecled were fermented successfully into ethanol by using S. Cerevisiae.\r Generally we get more ethanol from the samples when the enzyme was used. As the graph5 shows the ethanol concentration generally increased as the enzyme concentration increased. But especially in the sample1 (mixture with pomegranate) at 200 and 500 micro liter concentrations, ethanol production were 2 and 0 g/L respectively. In the light of this daha we conluded that the enzyme with high concentartion might inhibit the fermentation. When the activity of enzyme was inhibited by keeping the pretreated enzyme in boiling water, the fermentation restarted and recovered more ethanol; 8 and 12 g/L at the enzyme concentration of 200 and 500 microliter respectively.

什麼尚「氫」--談燃料電池之放氫探討

氫是一種非常理想的能源。不僅效率極高,且不會造成環境污染。空氣中的含量極少,常用的電解水方式又效果不彰。我們利用Ag、Ru、Cu 、C-CuPu、C 等數種電極,與H2SO4、 H3PO4 、HNO3 電解液,分別在10V 雙電極與-0.8V 三電極下做電解水實驗,研究何種電極與何種電解液能得到最多的氫氣量。在低電壓下找出最好的電極,液與太陽能電池結合,成為電池中的一部份,讓發電效果更好,以利未來燃料電池H is a kind of great power.It is not only effective,but also no environment pollution .Owing to the H in the air is very little,so it is not easy to take .Addition to,we often to take it by electro liquid,but the electrolysis effect is not ideal. Except Ag、Ru、Cu、C-CuPt、C and so on ,in theH2SO4、 H3PO4 、HNO3 electro liquid,we have a experiment in the 10V dual electrode and -0.8V triple electrode to study which electrode and which electro liquid to get the most of H.Under the low voltage,we can fund the best electrode.It is easy to bind with solar energy battery,andit can be a part of battery.Besides, it makes the generator effect better,and it is convenient to make the fuel cell commercialize in the future.

量子點敏化太陽能電池中光電極應用於水裂解之產氫

本研究將探討所合成的金屬硫化物製備於量子點敏化太陽能電池之光電極,並應用於水裂解反應,使之產生氫氣作為新型替代能源。以硝酸鋅、硝酸鎘、氧化硒及硫化鈉作為起始物,利用化學浸泡法(Chemical Bath Deposition, CBD) 於氧化錫參雜氟之導電玻璃(fluorine-doped tin oxide, FTO)表面上,製備不同層數量子點硫化物之光電極。當CBD循環層數為1、5及7時,運用紫外光-可見光吸收光譜儀與掃描式電子顯微鏡分別可觀察到光譜變化,與球狀、團簇狀,以及緞帶狀奈米材料之結構。另外以線性掃瞄伏安法測量光電流,在一個太陽光強度(100 mW cm-2)照射下,當電壓為1.3 V (vs. Hg/Hg2Cl2) 時, TiO2/(CdZnS)4/(CdZnSe)2/ZnS光電極之光電流可達 79.24 mA,可證明經CBD循環製成之量子點電極具有高電催化活性。此外將沉積不同量子點的光電極與硫化鈷反電極結合後製成不同的太陽能電池,在一個太陽光強度照射下測量其光電轉化效率,當使用的光電極為 TiO2/(CdZnS)4/(CdZnSe)2/ZnS 時,可得最大轉化效率η為 2.40 %。更進一步,以此光電極在定電壓下進行水裂解反應,由自製的氫氣收集器收集氫氣,可得其與白金對電極產氫率為 0.98 mmol/hr,以此可確定最佳化的光電極。

Peanut Hull as an Antioxidant in Metal Coats

A study was done to determine if the antioxidants found in peanut hulls could be used\r for lessening the corrosion rate of iron. Peanut hulls were ground then divided into two\r batches, P1 and P2, then oven-dried at temperatures of 50°C and 60°C, respectively. The\r moisture content of each batch was then determined before performing methanolic extraction\r to isolate the antioxidants. Eighteen iron strips of approximately the same surface areas were\r thoroughly cleaned and weighed, then divided into six groups. The iron strips in the first five\r groups were respectively coated with pure extract from batch P1; a 1:1 mixture of P1 extract\r and turpentine; pure P2 extract; a 1:1 mixture of P2 extract and turpentine; and pure\r turpentine. No treatment was done on the sixth group. All iron strips were exposed to air to\r allow formation of rust thru atmospheric corrosion. After 12 days, the iron strip were cleaned\r and weighed; then the individual corrosion rates of the metals were determined.\r The corrosion rates of the metals treated with pure P1 extract, the P1-Turpentine, and\r the P2-Turpentine mixtures were found to be significantly lower than the corrosion rates of\r the metals without treatment, at 5% level of significance in a t-Test for independent samples.\r The average corrosion rates of all the treated metals were found to be lower than that of\r metals treated with pure turpentine, though not significantly. The corrosion rate of the metals\r coated with turpentine was not significantly less than that of untreated metals. The corrosion\r rates of the metals were also found not to be dependent with the moisture as there was no\r significant difference in the mean corrosion rates of metals treated with P1 extract and those\r treated with P2 extract, with or without turpentine.\r The project has shown that peanut hull extracts can be used to lessen the production\r of rust on the surface of the metal. Moisture content of the hulls was not found to be a factor\r in lessening the corrosion rate.

化學光電池之光敏劑的開發與研究

六種自行合成出來的聯吡啶釕錯合物Ru(bpy)₃、Ru(bpy)₂(phen) 、 Ru(bpy)₂dcbpy、Ru(phen)₃、Ru(phen)₂(bpy)、Ru(phen)₂dcbpy 及商用染料N3-dye,被成功的做成光敏性太陽能電池。光電流的產生率可由IPCE (incident photon-to-current conversion efficiency) 的測量可知。此類釕錯合物可以物理吸附或化學鍵結於TiO₂奈米粒子上。IPCE 的大小可以用來探討不同吸附方式的釕錯合物轉換光電流的效率。在物理吸附上Ru(phen)₂(bpy)的效率最好。化學鍵結的以N3 Dye 最好,我們合成的錯合物以Ru(bpy)₂dcbpy 較佳。此種以TiO₂奈米結構為承載基材的太陽能光電池(Dye-Sensitized Solar Cell),染料仍以商用染料 N3-dye 最佳。本研究發現物理吸附的Ru complexes 也可產生光電流,若能最佳化,將可簡化染料錯合物之合成。 Six ruthenium complexes, Ru(bpy)₃, Ru(bpy)₂(phen), Ru(bpy)₂dcbpy, Ru(phen)₃, Ru(phen)₂(bpy), and Ru(phen)₂dcbpy were synthesized. These Ru complexes and N3 dye have been incorporated into the dye-sensitized solar cell system. The solar energy conversion of the ruthenium complexes were measured and converted to IPCE (incident photon-to-current conversion efficiency). There complexes were either chemically bonded or physically absorbed onto the nano-sized TiO₂ particles. The IPCE were utilized to compare the photon-to-current efficiency of these Ru complexes. Among the physical-absorbed dyes, Ru(phen)₂(bpy) has the highest IPCE. For chemical-absorbed dyes, the commercial N3 dye is still the best. Among the complexes synthesized in this research that are chemical-absorbed, Ru(phen)₂dcbpy has the highest IPCE The commercial N3 dye has the highest IPCE in the dye-sensitized TiO₂nanoparticle solar cell. We found that physically absorbed dye can convert photon to current. With better solar cell assembly, physically absorbed dye can have the same conversion efficiency as N3 dye.

燃起新契機-燃料電池電極材料性質之探討

Based on environmental protection and new energy development, the energy containing low pollution and having high efficiency becomes more popular. The fuel cell is an emerging technology, which is the reason why it is considered as Green energy. However, high-price membrane electrode assembly (MEA) inhabits the development of fuel cell. Among these components in MEA, platinum-based electrode leads the most cost. We select the multi-walled carbon nanotubes (MWNTs) as catalyst support to improve electrode material performance and reduce Pt utilization. But the particle size and dispersion of platinum as well as character of catalyst support may significantly affect the efficiency of electrode.燃料電池因為具備低排放污染、低噪音及高轉換效率等環保特性,故被稱為綠色能源,可取代內燃機作為發電之能源系統。然而燃料電池中觸媒粒徑大小、分散情形以及使用不同的觸媒載體,均有可能會影響其電觸媒的催化效能,所以我們以「觸媒粒徑大小」、「觸媒分散情形」為主軸,著手以下的研究。本實驗在不同的酸鹼值下製備燃料電池的電極材料,並以電子顯微鏡等器材,觀察已披覆在電極上白金觸媒的特性,探討不同酸鹼環境對白金觸媒粒徑大小的影響,並探究白金觸媒粒徑大小與其發電效率的關係。

挑戰溶液的電中性~「帶電溶液的研究」

利用范式起電器將靜電導入蒸餾水、甘油、苯、環己烷、乙醇、正丙醇、正戊醇,以及HCl(aq)、NaCl(aq)、CuSO4(aq)……等不同溶液中,我們發現:非電解質溶液可以藉由極性分子的媒合作用"貯存”電子,而其中H2O效果最好,即水合電子是可以穩定存在的!但在水中若添加HCl、NaCl等電解質會提高容易導電性,以致於無貯存電子的效果。我們也發現苯雖不是極性分子,但因具有π共振系統,也能有效貯存電子。另外,從引入密度泛函數理論結合類導體可極化連續模型加以計算的結果,也能發現極性分子容易的溶劑電子親核能比非極性分子容易來的大,與實驗結果吻合。By using a Van de Graff Generator to put electrons into various solutions or solvents (such as water, alcohol, benzene, propyl alcohol, solutions of sodium chloride, etc.), we find out that nonelectrolytes can "store" electrons through hydration of polar molecules. And water has the best ability of keeping electrons among others. In other words, hydrated electrons can exist stably. However, if we add electrolyte into solvent, the solution won't store electrons because of its increasing electric conductivity. The experiment also shows that benzene can keep electrons though it is a nonpolar molecules. We infer that it is the " π resonance system " which contributes to its high ability of electron storage. In addition, by introducing the calculations of CPCM (Conductor-Like Polarizable Continuum Model), we find out that the electron affinity of polar solutions are stronger than those of nonpolar solutions. The computed results are in agreement with our experiment.

『亮』出色彩-PLED 的製作

利用化學合成法合成出聚苯胺及MEH-PPV,經過一連串的製程作出高分子\r 發光二極體(PLED),再用I-V 儀量測。實驗中以聚苯胺及MEH-PPV 的薄膜厚\r 度為變因,進行實驗。設定I-V 的電壓值為10V,量測樣品通路上的電流。一開\r 始電壓在跑時,量到的電流都為0A,所得到的圖形為一水平直線;當電壓到達\r 一個值時會向上爬升,但爬到一個階段後圖形呈現鉛直掉落至電流為0A,圖形\r 又恢復成水平直線。過程中看到了薄膜厚度對樣品確實有影響,又鋁電極的厚度\r 不能承受過大的電壓,電壓一大,樣品馬上就燒壞了。\r Abstract:\r Using Chemiccal polymerize PANI and MEH-PPV make through a series\r Polymer light emitting diode(PLED)Produce.then using I-V meter surveies. PANI\r and MEH-PPV change of thick proces.Experiment design I-V volt for meter\r conduction of current of sample .The voltage moving.First meter current is obtaining\r the figure is horizontal when voltage increase to a special value , but increase a while ,\r the current will fall down to zero volt. Figure will go to horizontal that sample will\r change .Thick is different,and aluminum cathode can not suffer too much\r voltage .otherwise will burn.

甲醇氧化物對直接甲醇燃料電池發電效能的影響

The purpose of this paper is to study the roles of formic acid and formaldehyde playing in the Direct Methanol Fuel Cells(DMFCs).The assumption is now widely accepted that the Oxidation-reduction intermediate of cell like formic acid and formaldehyde will hinder the reaction of DMFCs. At first, we recorded data which measured the efficiency of DMFCs working under the different temperature of fuel, then we recorded data which measured the efficiency of DMFCs working under the different consistency. In the end, we compared the data we recorded before and chose the best reaction environment as standard environment for the future experiment. Then we discover intermediate has positive effect on DMFCs. we separately put formic acid and formaldehyde into fuel, and we discover the efficiency is better than\r before. For example, the volt stability and volt intensity of DMFCs are better. The above conclusion is mainly based on open current volt, equally volt and electric current density which is the standard of evaluation.本實驗主要探討甲酸、甲醛等雜質在直接甲醇燃料電池中扮演的角色,一般認為甲酸等是甲醇在電池中反應的中間產物,大多數人認為這些中間產物會阻礙燃料電池的反應。而我們先針對了甲醇在各種溫度下電池的效能先做出了圖表,並使用不同濃度的甲醇燃料來測量電池的效能並與之前溫度的圖表做比較,選出最合適的直接甲醇燃料電池反應環境作為添加雜質實驗的標準環境。接下來我們在研究過程中發現,其實中間產物可能對電池有正面的效果,我們發現甲酸、甲醛等對直接甲醇燃料電池的電源輸出有正面的影響,例如電壓穩定性與電壓強度的增強。在研究中,我們將甲酸等加入燃料電池的燃料(甲醇)內,模擬甲醇因不當保存而產生的雜質,針對添加物的濃度做些調整,以電池的開路電壓(OCV)、平均輸出電壓、以及單位面積的電流密度作為評比電池效能的標準,並找出甲酸等對燃料電池效能的影響,並進一步找出最適合的電池燃料配置。

蟹殼幾丁凝膠應用在金屬氧化物奈米顆粒的製備與燒結

筆者利用自製的幾丁質與不同金屬的混合溶液而燒結出的奈米顆粒成效極佳,不但粒徑大小符合,在燒結的過程中也不需經過物理研磨及介面活性劑的輔助,並且在低溫下即可燒結,可以增加實用性以及商業價值。此外,在分解亞甲藍方面也有不錯的效率,並進一步從金屬氧化物之奈米膠體混合溶液比例的不同,決定其粗糙度(以AFM測定)及能隙改變,在陽光下有更高的應用效率。而在實驗的延伸研究上,希望應用在防菌、除污、甚至光電池。 We make use of self-made chitin with the mixed solutions of different metals to solder nano particles, and the result is excellent. The particle radius not only matches up to the size, but in the process of soldering nano particles, it doesn’t need any physical pulverizing or surfactant assistance. Also, it can solder in low temperature. And we could raise its practicality and the business value. What’s more, there is a good efficiency in decomposing Methylene Blue. We can further decide the roughness (measured with AFM) and the variation of the band gap from nano colloid of different metal oxide mixed ratios.Our experiment in the extending research aims to apply it to the defense of bacteria and pollution, and even photoelectric cell.