全國中小學科展

化學

油脂皂化反應的實驗設計與探討

本研究主要利用油脂「皂化反應」的原理,設計六個部份實驗,試著從定性方面探討油脂的皂化反應及其產物的分離,包括(1)肥皂的鹽析(2)脂肪酸的鹽析(3)脂肪酸平均分子量的求法(4)肥皂的沉澱試驗(5)甘油的丙烯醛反應(6)甘油的銅複合物之形成。從定量方面:利用化學動力學研究油脂皂化反應的級數,及油脂的碘值、酸值、皂化值等問題,期望能在環保上對處理油污工作有所幫助。This research mainly applies the theory of lipid Saponification to design six experiments and try to study lipid Saponification and the division of the product, including (1)salting out of soap (2) salting out of fatty acid (3)study on the molecular weight in fatty acid (4) soap precipitation (5) acrolein reaction of glycerin (6). Glycerin’s Cu-complex formation of soap .From the aspect of assay use chemical kinetics to research the order of lipid Saponification and the problems of Iodel value, Acid value, Saponification number and so on, expecting to help dispose oil pollution in the environment.

微波加速轉酯化生成生質柴油實驗與結果分析

因國際原油價格上漲,因此對研究及發展具潛力的生質柴油引起高度興趣。傳統以加熱方式在適當觸媒下將低碳數醇類與油脂轉酯化生成生質柴油。但以強鹼為觸媒使用過量會讓部分反應轉為皂化。而利用微波,使微波腔在極短的時間內產生電場,使具有電偶極的分子朝向電場方向迅速排列而產生轉動,快速地增加分子間的碰撞頻率而加速反應,但不破壞分子結構。也嘗試利用超音波來生產生質柴油。試驗方法為利用SD-22 柴油引擎測試所生產的生質柴油,並收集廢氣檢驗,評估其污染性。實驗後發現,微波能將一般加熱所需的60 分鐘大幅縮短至4 分鐘,甲醇溶液能生產較多的生質柴油。其中1.40%氫氧化鉀甲醇溶液且油與醇莫耳比1:9 效果較佳。氫氧化鉀甲醇溶液0.80%且油與醇莫耳比1:5 效果亦佳。製成的生質柴油能讓引擎發動,廢氣處理後經分光光度計檢驗氮氧化物,生質柴油確實能有效減少氮氧化物污染。 Due to the fact that the price of international crude oil raises , people look for alternative energy resources actively. Therefore, I have great interests in doing researching and developing the biodiesel through many ways. The traditional way is to transesterify the low carbon alcohols and fats with the suitable catalysts by means of generally heating. However, the overuse of strong bases as catalysts may turn the experiment result into saponification reaction. This study made good use of the microwave to generate electric fields in the microwave cavity in an extremely short time. Owing to the effect electric fields exerted, the molecules with electric dipole momentum rearranged to rotate rapidly .Consequently, the frequency of collision among the molecules increased without destroying the molecule structures. Also, I applied SD-22 diesel engine to test the produced biodiesel and examined the collected exhaust to evaluate its pollutant. According to the results of these experiments, the conclusion was as following: the microwave could shorten the Transesterification reaction time from 60 minutes to 4 minutes. The methanol solution could produce more biodiesel than the ethanol solution. Besides, the 1.40 wt % Potassium hydroxide solution with the molar ratio of oil and methanol 1:9 had the best efficiency in producing biodiesel. On the other hand , the 0.80 wt % Sodium hydroxide solution with the molar ratio of oil and methanol 1:5 also had the great efficiency. All the biodiesel we produced enabled the diesel engine to run smoothly. The exhaust inspected from the examination of Spectrophotometer resulted that the biodiesel did less NOx pollution to the environment indeed.

毛細管中的拉午耳

本實驗利用簡單的儀器(使用毛細管與注射針筒), 求出不同混合比例之有機溶液的各個成分之蒸氣壓、蒸發速率與蒸發量 , 進而可推算出蒸發熱速率,而利用此實驗得到的數值,並可應用在不同的領域,如日常生活中之散熱劑、工業上之機器散熱、及醫療上之人體退燒等,均可利用此實驗程序找出適當的比例,\r 並可進一步理論探討「拉午耳定律中正負偏差」以及「蒸氣中各成分的組成活性」。 \r In this experiment, simple instruments including capillary tubes and syringes are\r used to find vapor pressure, rate of evaporation, and evapotranspiration of all\r elements of organic solution under different mixed proportions. In this way, the\r rate of evaporation that can be compared ; therefore, becomes suitable for different\r areas that include heat dissipation for daily life, machine heat dissipation for\r industry, and fever reduction for medical applications. In other words, the experiment\r proposed here can be utilized to find the appropriate ratio. Meanwhile, we can use\r the results to perform the theoretical investigation of Positive-Negative Bias of\r Raoult's Law and Component Activity of Vapor.

濃差電池與溫差電池

伏打電池中,若兩極的電極種類及溶液種類均相同,僅是兩極的溶液濃度或溶液溫度不同,兩極間就有電位差,稱為濃差電池及溫差電池。典型的濃差電池中 ( 電極為電解液正離子的金屬片 ),濃度大的一端電位較高,電池電壓與兩杯溶液濃度比值的對數值成正比,且在相同濃度比值時,硝酸銀濃差電池的電壓最大,其次為硝酸銅、硫酸銅,硫酸鋅濃差電池的電壓最小。硫酸銅溫差電池,若電極為銅片,則電池電壓與兩杯溶液溫度差成正比,且溫度高的一端電位較高。 我們將硫酸銅溫差電池製成太陽能電池,在太陽下曝曬3 小時,電壓可達 13.6mV, 電流可達0.76mA,因此只要串聯數個電池以提高電壓,再對鉛蓄電池充電,就可以達到方便、實用與重複使用的目的。 In a voltaic cell, if the kinds of both electrodes and electrolytes are the same, but the molality or the temperature of the solutions are different, there will be potential difference between the two electrodes. We can them molality-difference cells and temperature-difference cells. In a typical molality-difference cells-its electrode is a piece of metal which is the same kind of metal with the cation electrolyte.-the electrode with the higher molality has the higher potential, and the potential and the log of the fraction of the molality of the two glasses of solution are directly proportional, and when the fraction is the same, AgNO3 has the highest potential and then Cu(NO3)2 and CuSO4, and ZnSO4 has the lowest potential. In a CuSO4 temperature-difference cell, if its electrode is a piece of cuprum, then the potential and the temperature- difference of the two glasses of electarolytes are directly proportional, and the electrode with the higher temperature has higher potential. We use CuSO4 temperature cell to make a solar cell, and put it under the sun for 3 hours, the potential can be 13.6 m V, and the current can be 0.76m A. Therefore we can make several of them series to get higher potential and charge a lead storage battery. By this way, we can make a convenient, practical and recycled battery.

Emitting Gold Nanodots Synthesized via Protein Templates

本研究利用蛋白質的環保、生物活性,金奈米粒子的低毒性,及蛋白質金奈米粒子的螢光特性,合成可應用於生物體內之螢光蛋白質金奈米粒子,從而利於標靶藥物研究。本研究選擇與眾多疾病相關的胰島素,以最佳方式合成紅色螢光胰島素金奈米粒子,有助於探討糖尿病相關機制。並嘗試以養晶得到結晶狀的胰島素金奈米粒子;經由離子測試發現胰島素金奈米粒子十分穩定,更可應用於細胞內微量氰離子檢測;根據CD光譜,確認胰島素金奈米粒子與胰島素的蛋白質二級結構相似。之後利用MTT測試細胞毒性,並將胰島素金奈米粒子餵入細胞,並取得細胞螢光影像,證明胰島素金奈米粒子可經由細胞表面之胰島素受體進入細胞內,且呈現紅色螢光,證明胰島素金奈米粒子可用於生物體內顯影追蹤。利用老鼠實驗證明胰島素金奈米粒子具有胰島素降血糖之功用。

解開蔗糖水解的秘密

本研究利用偏振片、量角器為刻度盤、雷射光為光源,及照度計為偵測器,組裝一個簡易且可靠的旋光度計。我們利用單位時間旋光度的變化量當作反應速率,來測量蔗糖的水解速率,同時求出蔗糖水解反應的反應級數、速率常數(k)。利用糖類的旋光度具有加成性之特性,找出不同混合比例時的旋光度,追蹤實際蔗糖水解的每個狀態,找出最後平衡狀態,同時將蔗糖水解平衡結果顯示,旋光度與濃度有線性關係,而蔗糖水解反應對蔗糖而言為一級反應。接著,我們在蔗糖水溶液中加入不同種類的酸,探討催化劑的種類與蔗糖水解反應速率的關係。 In this research, in order to measure the optical rotation accurately without expensive equipments or complex process, we assembled a polarimeter by ourselves. With simple materials which can be found in ordinary senior high school laboratories, including a calibrated scale, a simple Luxmeter, a laser as the photo source, and other side devices. The Polarimeter ended up operating fluently and accurately. We put the laser under a tube, which has two pieces of polar screens on the top of it and on the bottom of it, ,and put a luxmeter just above the tube. When we slowly rotate the polar screen on the top, the figure shown on the luxmeter changes. By numerical analysis, we can get information about the hydrolysis of polarized substance. Secondary, we measured the optical rotation of glucose, fructose, malt sugar, galactose, and sucrose to get their specific rotation. Then we measured the optical rotation of sucrose every five minutes. By doing this, we could keep track of the hydrolysis rate of sucrose, figure out the order of reaction, and the rate constant (k) and the equilibrium constant (K). Thirdly, we used different kinds of acids into sucrose solution as the catalyst, and observed the effect. The result showed that hydrochloric acid is a better catalyst to this reaction than sulfuric acid and nitric acid. The polarimeter of this research can be used in science education of junior and senior high school. By teaching students to assemble and operate the self-made polarimeter, students can know better about optical rotation and polarized substance. Also, the interest in this experiement will add to students’ motivation to do science research.

三個新的鋅的幾何異構物

在本實驗中,我們合成了三個新的鋅的幾何異構物:trans-facial-[Zn(dipica)₂]Cl2.CH3OH(dipica=dipicolylamine,C12H13N3,雙(2吡啶甲基)胺)trans-facial-[Zn(dien)2]Cl2(dien=diethylenetriamine,C4H14N3,二乙基三胺)及反式-[Zn(demn)2Cl2](demn=N,N’-dimethylethylenediamineC4H12N2,N,N'-二甲基乙二胺)。本實驗的特色皆在室溫下反應,採用擴散法培養晶體。trans-facial-[Zn(dipica)22]Cl2.CH3OH晶體為三斜晶系,晶格常數a=8.8269(6)Å, b=8.9908(6)Å, c=10.0292(6)Å,α=76.715(1)。,β=81.232(1)。,γ=67.753(1)。;其空間群為P1,可信度R=0.025,Rw=0.0697。六配位的陽離子,其結構為扭曲八面體,兩個含氮三牙基(dipica)trans-facial配位,赤道面(ZnN(1)N(2)N(1A)N(2A))由兩個含吡啶環之氮(N(1)、N(1A))及兩個飽和胺之氮(N(2)、N(2A))所組成。主軸為兩個吡啶環之氮所組成。兩個含氮三牙基(dipica)與鋅的咬合角皆為84.5。。trans-facial-[Zn(dien)2]Cl2晶體為單斜晶系,晶格常數為a=11.3050(3)Å,b=10.9264(3)Å, c=12.6147(3)Å,β=92.884(1)。;其空間群為P21/c,可信度R=0.0191,Rw=0.0484。六配位的離子,其結構為扭曲八面體,兩個含氮三牙基(dien)與鋅的咬合角為156°、157°。反式-[Zn(dmen)2Cl2]晶體為單斜晶系,晶格常數 a=10.3397(4)Å,b=8.5916(4)Å,c=7.9774(3)Å,β=100.520(1)°;其空間群為C2/m,可信度R=0.0266,Rw=0.0686。其結構為八面體,鋅原子四個氮原子組成赤道面(ZnN(1)N(1A)N(1B)N(1C)),兩個氯原子位於此平面的兩側。兩個含氮雙牙基(dmen)與鋅的咬合角皆為83.0(1)Å。 In this study, we have synthesized three new geometrical isomers of zinc(II)complexes: trans-facial-bis(dipicolylamine)zinc(II)chloride-mathanol(1/2)(trans-fac-[Zn(dipica)2]Cl2.2CH3OH), trans-facial-bis(ethylenetriamine)zinc(II)chloride(trans-fac[Zn(dien)2]Cl2)and trans-bis(N, N'-dimethylethylenetriamine)zinc(II)chloride(trans-[Zn(dmen)2]Cl2). The crystals suitable for X-ray diffraction were obtained by slow diffusion of ether to solution of the products. There molecular strctures determined by X-ray diffraction. The complex trans-fac-[Zn(dipica)2]Cl2.2CH3OH crystallizes in the triclinic space group P 1 with a=8.8269(6)Å, b=8.9908(6)Å, c=10.0292(6)Å,α=76.715(1)。,β=81.232(1)。,γ= 67.753(1)。, for Z=1. The R value is 0.0259 for 3286 significant reflections. In the hexacoordinate cation, the two tridentate dipicolylamine ligands are trans-facially coordinated with two pyridine nitrogens and two secondary amine nitrogens situated on four positions in a basal plane(ZnN(1)N(2)N(1A)N(2A)). The remaining two pyridine nitrogens constitute the axis in a distorted octahedra structure. Colorless trans-fac-[Zn(dien)2]Cl2 crystallizes the monoclinic space group P21/c with a=11.3050(3)Å, b=10.9264(3)Å, c =12.6147(3)Å,β=92.884(1)。,and Z=1. The R value is 0.0191 for 3285 significant reflections. The zinc(II) atom has distorted octahedra coordination, in which the ligands are bound in a trans-facial configuration. Colorless trans-[Zn(dmen)2Cl2] crystallizes the monoclinic space group C2/m with a=10.3397(4)Å, b= 8.5916(4)Å, c=7.9774(3)Å,β=100.520(1)。, and Z=2. The R value is 0.0266 for 856 significant reflections. The zinc(II)atom of trans-[Zn(dmen)2Cl2]is six coordinate with 4 nitrogens of bidentate dmen forming a basal plane(ZnN(1)N(1B)N(1A)N(1C)),and two chlorines on the axial sites completing an octahedra structure.

天然植物色素與人工染料敏化之太陽能電池

本實驗以吸附染料之二氧化鈦奈米結構電極層為承載基材的太陽能電池為研究對象,旨在增進其光電轉換效率,促使染料有效地吸收光能後造成電荷分離,再經由二氧化鈦傳導帶向外傳出而形成電流,即所謂染料敏化太陽能電池。實驗主軸共分三:1、合成染料N3:觀察吸附度與浸泡時間之關係,發現在18~20 小時電池有最佳吸附;改變電解液濃度,求得最佳電解液濃度範圍;酸化二氧化鈦極板。2、天然植物色素:改變溶劑,得出高極性之丙酮對電池最佳;酸、鹼化植物色素;觀察電池隨著光照時間增加,性質趨於穩定。3、混合色素與染料:此實驗旨在印證不同吸能範圍之染料在極板混合浸泡後,電池吸能帶是否有疊加、擴充的效果,並觀察分開浸泡與混合色素一起浸泡之不同效應,量測IPCE 以玆比較。實驗結果可知,確實對於電池吸光範圍有所增加,且分開浸泡之效果較好。This experiment is mainly about the phtosensitization of Ti02 solar cell, aiming at improving the energy conversion efficiency, promoting the electric charge to separate from TiO2 and spread out through after the dye absorbs light. That is so-called dye-sensitized solar cell. The experiment mainly divides into three parts: 1. Ruthenium(II): Observing the connection between adsorption and dipped-time, find out that solar cell has best to adsorb in 18 to 20 hours; change the concentration of electrolyte; acidification TiO2. 2. Photosynthetic pigments: Change solvent, and get the conclusion that pigment has better adsorption in high polar solvents such as acetone; acidification/basification pigments; observe the changing of energy conversion efficiency while the illumination time increases. 3. Mixed the dye and pigment: This experiment is aim at proofing that the absorption spectrum of soaked-TiO2 may mix after dipped in different dye and pigment. Furthermore, we compares the differences between TiO2 dipped in one mix solution and dipped in several solutions separately, measure its IPCE. According to the experiment, the spectrum of soaked-TiO2 is certainly larger, and dipping in solution separately has better effect to the battery.

奈米溶膠製成蓮花效應及應用

Lotus effect(蓮花效應)是蓮葉表面化學組成(wax)與物理組成(微纖維結構)兩者所造成。本研究是以模擬Lotus effect,採用Sol-Gel 製成,將氟化矽聚合為奈米膠體。實驗結果發現,以異丙醇為溶劑,再依序加入氟化矽、硝酸以製成的Sol-Gel,將其塗覆於玻璃表面,可得到最高的接觸角(114.71°),且少量的氟化矽可製成大量的成品,已具有實用價值又兼顧成本的優點,最重要的是,本研究克服了目前Sol-Gel 製程與應用的四大難題(機械強度、與基材接著問題、透明度、溶膠凝固問題),可說是一大創舉。利用所研發出來的奈米溶膠,我們能成功地將Sol-Gel 附著於布料、玻璃、釉表面、粉體,也能成功地研發出具有自潔透氣的布料、救生衣、雪衣、棉被及自潔功能的玻璃、磁磚與市面上尚未研發出的防水粉體(接觸角>140°),因此我們研發出的Sol-Gel 應用甚廣,有無限的發展潛力。Chemical composition (wax) and physical characteristics (microstructure) of lotus leaves are both responsible of the so call Lotus Effect. In this study we intend to demonstrate louts effect by applying Sol-Gel method to polymerize fluorosilane into nano-scale colloid. Our experimental results shown that the sol-gel made based on isopropanol solvent with fluorosilane and nitric acid added in order, when coated on glass plate, can achieve highest (liquid-surface) contact angle of 114.7 degrees. In addition, only small quantity of fluorosilane is sufficient to produce large amount of product, making this method feasible and cost-effective. More importantly, this procedure overcome the four major difficulty of sol-gel processing and application, namely mechanical toughness, adhesion with substrate, transparency, and consolidation. Using the nano-sol-gel developed in this study, we have successfully coated the sol-gel onto fabric, glass, ceramic grazing surface, and powder, which allow one to make self-cleaning breathable clothes, life jacket, snow cloth, futon and self-cleaning glass and tiles, as well as water-proof powder (contact angle > 140 degrees) which is brand new on market. We therefore believe that there is a great potential for the application of sol-gel developed in this study.

自由基VS抗氧化物

自由基會產生在神經系統、免疫系統、血液循環系統等等,進而影響到人體各器官的運作,甚至於近年來許多醫生學者提出自由基病理:自由基是百病之源。本次實驗筆者挑選葡萄子、維生素C、綠茶來抑制清氧自由基(OH.)所採用的方法是將10%雙氧水製入注射筒並加亞鐵離子催化,,使其與抗氧化物反應,由於雙氧水分解會產生氫氣自由基與氧氣,因此筆者用倍率放大器(OPA)放大生成氧氣造成的電壓,並用Data Studio測量記錄,最後可由氧氣體積對電壓的趨勢圖看出抑制氫氣自由基的效果;Free radicals will be produced in our nerves system blood circulation immunization system etc. and they able to influene the operaion for our organs many medical scholars have even come up with "free radical pathology"-free radicals are sourse of all he diseases in recent years.In this study, I chose rape stone vitaminC and green tea to restrain hydroxide radicals(OH.) Here is summary of the experimental process. First,I put 10%hydrogen peroxide into an injector and then added ferrous ion to hydrogen peroxide to catalyze it. Second I let it reaact with the sample. Because hydrogen peroxide can produce hydroxide radicals and oxygen, I used the mutiplier(OPA) to amplify the pressure caused with the prducion of oxygen, measuring and recording resuls by the software"Data Studio"Finally, we can tell which antioxidant is more effective in restraining hydrode radicals from volume-voltage gragh.