Amazing Fairy Chess -討論多元方形鏈的數量
在這篇研究報告中,我們討論的是一種方形集合圖形的數量。”多元方形鏈”約略在 60 年代被提出,衍生出一系列的問題和遊戲,例如熟知的電玩軟體 『 俄羅斯方塊 』 ,或是 『 益智積木 』 的遊戲,都是多元方形鏈的應用。在這些問題當中,最令人頭痛的難題就是 n 元方形鏈的圖形總數。為了解決這道難題,我們採用一種轉換方法將圖形轉換成序組,並且給出序組的性質,再據此寫成 C 語言的程式;反覆地修改程式以增進執行效率及速度,最後利用該程式成功地統計出圖形總數。 In this report, we discussed the amount of polyominoes, the graphs of a set of squares. “Polyominoes” has been brought up in 1960s, and later developed into a series of questions and games, such as a well-known video game — Tetrix, and the game of puzzle blocks. Both are the applications of polyominoes. Among those questions, the toughest one is the amount of n-polyominoes. To solve this problem, we used a method which transforms the graphs into sequences. By looking into the properties of those sequences, we obtain a set of rules that can be used to determine the quantity of n-polyomines. The rules are implemented into computer codes in C language with proper modifications made to speed up the efficiency of our algorithm. The computational results show that the amount has been successfully calculated.
隨機遞迴數列及渾沌現象
給定一個p∈(0,1),令k0=0,p0在(0,1)間隨機分布,定義 k1為能使的最小正整數k,而;相同的,對於給定的kn-1,kn為能使的最小正整數k,。若存在kn使得,則稱p∈In;若對於所有的n與kn,,則稱p∈I∞。如此區間(0,1)可分解成集合I1,I2,…I∞。
凸多邊形完美分割線的尋找
1) First, we studied the properties of lines and segments that bisect a triangle’s perimeter. By observing the properties, we found a “revolving center” what we defined. We employed the revolving center in the construction with ruler and compass to make “triangle’s perimeter bisectors” that pass the points we desire. Later, we found out the “envelope\r curves’” equations of the “perimeter bisectors” on the triangle’s two sides are parabolic curves. Moreover, the focus of this parabolic is just as same as the revolving center. 2) The curves envelope of area bisectors formed a hyperbolic curves. By similar method of constructing a “perimeter bisector”, we can also construct an “area bisector”’ by using the hyperbolic curve’s focus. We accidentally found out that we can construct the tangent of the conic by using our method, too. Different from the information we found, It supplies a easier method to construct the tangent of a conic. 3) With the rules of constructing perimeter (area) bisectors, we can expand the method to constructing the “perimeter (or area) bisectors” of any convex polygons. 4) We call the lines that bisect the convex polygon’s perimeter and area at the same time the "perfect bisect lines”. Based on the properties of the” perimeter bisectors” and the “area bisectors” in our research, we found out that the” perfect bisect lines” pass the intersection of the” perimeter bisector’s effective segment” and the hyperbolic. Thus, we can construct the “perfect bisect lines”. Moreover, we proved the esistence of the “perfect bisect lines.”1. 首先我們先探討三角形等分周長線的性質,利用性質及觀察等周線的變化,我們找到可利用本研究所稱的「旋轉中心」,以尺規作圖的方式,作出「任意點的三角形等分周長線」。接著我們導出三角形兩邊上等周線所包絡而成的曲線方程式為一條拋物線的曲線段。進而發現上述的旋轉中心,即為等周線所包絡而成拋物線的焦點。2. 三角形兩邊上等積線所包絡出的曲線是一條雙曲線的曲線段。利用等周線的尺規作圖,我們找到同樣可利用焦點當旋轉中心做出等分面積線。意外的發現出圓錐曲線的切線作圖,皆可利用我們的研究方式(有別於已查出的文獻上記載),較快速的作出切線。3. 利用三角形等周線(或等積線)的尺規作圖,可擴展到「過任意定點作出凸多邊形的等周線(或等積線)」。4. 我們將同時分割凸多邊形等周長與等面積的分割線稱為「完美分割線」。利用三角形研究出的等周線與等積線相關性質,我們找出完美分割線必通過同角的等周有效段與等積曲線段之交點。利用這結果可作出完美分割線。並進一步,我們證明出凸多邊形完美分割線的存在性。
一些Moire patterns 的數學性質研究
Moire 為法文,其英譯為watered, 是古代織布技術的一種應用;將印有規律條?的透明薄片重疊時,稍微移動或轉動其中的一片,會形成極大的圖形變化,稱為moire pattern本作品針對三個moire pattern 的數學式加以推導:(一)、兩張透明片各印有等間隔平行線,轉動其中一片使兩線的夾角θ,亮紋垂直距離和暗?垂直距離的比值為tanθ/2tanθ 。(二)、兩張透明片各印有輻射線,重疊後行成圓系,可由代數或幾何加以證明,利用三角函數可推導出此圓系方程式為:x2+{y-rtan[π/2-(θ-?)]}2)]}={rsec[π/2-(θ-?)]}2)]}\r \r (三)、透明片A 印有等間隔平行線,B 印有符合高斯曲線的平行線,AB 重疊時,形成一系列的高斯曲線,AB 的夾角減少時,會增大曲線的曲率,我們進一步討論曲線的曲率和平行線斜率的關係。Moire is the French word “watered” and refers to an ancient technique employed in cloth making. The moire occurs whenever two or more transparent sheets with periodic strips on them are superposed. The characteristic of moire patterns is the fact that a slight shift of sheets will create dramatic alternations in the observed patterns. In the present report, We derive the equations of three different moire patterns. First of all, take a sheet with equal spaced straight lines and placed it on top of another identical sheet. They are made to intersect and form an angle of θ. As the angle changes slightly, it produces huge changes in the spacing of moire fringes. We can derive a formula related to the interfringe distance. The ratio of bright fringes and dark fringes is tanθ/2tanθ.Secondly, two transparent sheets with radial lines on them are overlapped, forming a pattern similar to the lines of force between point charges. We can find that the pattern is a series of circle by means of algebraic and geometric proofs. And proven by trigonometric functions, we canconclude that they satisfy the equation :x2+{y-rtan[π/2-(θ-?)]}2)]}={rsec[π/2-(θ-?)]}2)]}\r Thirdly, a set of lines of equal spacing is overlapped with a second set of lines whose spacing are derived from a Gaussian curve. A series of Gaussian curves is reproduced in a moire pattern. Reducing the angle of intersection between the two figures steepen the curvature. We discussed the relation between the curvature and the slope of inclined lines.
平面切立方體內單位立方格數極值之計算
我們先假設有一正方體及一截過正方體之平面,並設正立方體為一k*k*k 之立體。為計算平面截過之單位正立方體個數,我們必須先分別計算各層被切過之個數再將之相加,因此將各層面投影至同一平面,簡化為平面上之問題,並討論其性質/規律,計算平面截此正立方體之個數。如此,便可以一般化數學式計算平面截正立方體個數之問題。接著,用以上方法為基礎,討論各種平面切正立方體之類型,將被平面所截之單位立方體個數以電腦程式算出,觀察數字變化及其性質規則,並找出最大值發生之條件。 We initially supposed that there are a regular hexahedron consists of unitary n × n cubes and a plane which incises the regular hexahedron. To calculate the total number of the unitary cubes incised by the plane, we can first calculate them layer by layer and then sum them up. And further, we project each layer on the same plane, so the three-dimensional problem is simplified into two-dimension. By making use of the character which results from projection, we can easily calculate the number of the unitary cubes incised. Consequently, we are able to calculate them with a general equation. Afterward, we research each circumstance that the plane incises the regular hexahedron on the base of the mentioned methods. Calculate them with self-designed computer programs, and observe the regulation and change of the result. Furthermore, we can find out when it will achieve the maximum.
形?與形外
在這篇研究報告中,我用了三種觀點來推廣幾何中的反演變換,首先,把反演變換視為是一種圓內與圓外的一種1-1且onto的映射,第一種推廣,是將變換中心移到視圓心以外的圓內的地方,馬上我們得到一個結論「反演半徑會隨著動點而改變」,接著,我們實驗了一下反演變換用有的一些性質,保角性,保圓性,…等在這個變換視中是否依然存在;接著我們用第二種方法來推廣反演變換,我們將邊界的形狀由圓視改成別的形狀(如三角形,四邊形…等等),然後也試試看在這種變換之下是否還擁視有反演變換的一些性質;第三種推廣,則是在研究的過程中,我發現了一種新的幾視變換,承接第一種推廣,我們將原先為定點的變換中心改為動點,將原先的動點改為定點,做出來的一種新變換。In the study, a new geometric Inversive transformation through three points is discovered. Here is the main result:(1)The first, onto cycle of inside and outside can be proved under invasive transformation. It is changed moving the center from center of cycle, we can get a new ” Inversive radius can be changed by moving drop. (2) We hope to find the answer to this problem by experiment, it is exist with the inversive properties. (3) A new geometric transformation is discovered, a fixed drop can be changed moving drop, then the first moving drop shifted the fixed drop. This leads to a new construction if the new transformation.
耍「薛骰」-Sicherman Dice 的探討
George Sicherman discovered that it is possible to take a couple of 6-sided dice re-labeling them with different positive integers (1,2,2,3,3,4) and (1,3,4,5,6,8) having the same probability distribution as rolling a standard pair of 6-sided dice. Such unique pair of dice is calling Sicherman dice. The secret behind the Sicherman dice can be studied by combining the powerful mathematical tool “Generating functions” with the symbolic manipulation software “Derive 6”, The same procedure may be applied to studying the possibility of the generalized Sicherman dice along the consideration of :\r (1) Adding more dice. (2) Changing the number of faces. To this end, we introduce the concept of the Sicherman Bound. For a given integer n, the number of n-sided Sicherman dice is finite. We computed manually such numbers for n?50 based on the method of “Elimination of negative terms”. Sicherman Dice 就是一對點數配置與正常骰子(6 面正立方體,點數為1到6)不同的骰子,它所拋擲出的每一種不同點數和(2,3,4...,12) 的機率恰好與一對正常的骰子相同。這種骰子是美國的Col. George Sicherman 所發現的。 Sicherman 更進一步指出:在不使用Sicherman Dice 的情形下,不可能找到一組大於或等於三顆的非正常骰子,它們拋擲出的每一種不同點數和的機率恰好與一組同數量的正常骰子相同。本研究的目標在於1. 尋求計算「Sicherman Dice 的組合和正常的骰子有相同的出現機率」的方法2. 證明Sicherman 結論的真偽及是否適用於其他正多面體(4 面/ 8 面/12 面/ 20面) 的標準骰子3. 修正Sicherman 的結論,並定義Sicherman 極限(Sicherman Limit)。在假設n面正多面體(n 為自然數, n ? 50 )存在的情形下,探討每一個正多面體的Sicherman 極限4. Sicherman Dice (Crazy Dice) 的延伸探討(1) 不同面數骰子的組合,是否可以找到面數組合相同,但點數配置不同的Crazy Dice( 如4 面與6 面的標準骰子組合,找到4 面與6 面的Crazy Dice)(2) 多個面數相同或不同骰子的組合,是否可以找到面數、個數及點數配置皆不同的Crazy Dice ( 如3 個4 面標準骰子組合, 找到2 個8 面的Crazy Dice)在研究的過程中,我發現以下的現象:(1) Sicherman Dice 的產生,是生成函數因式重新組合的結果(2) Sicherman Dice 是否存在,則視上述重新組合的結果是否有負項產生由於上述的觀察,我使用自行發展的「負項消去」法來檢驗Sicherman 結論的正確性及求得n 面正多面體其對應的Sicherman 極限。同時我也和Col. George Sicherman 取得聯繫, 討論當年他發現Sicherman Dice 的經過及其結論的限制條件,作為本研究未來發展的參考。