First-Ever Study on Groundwater Discharge Zones in Tumon Bay, a Protected Marine Preserve: Novel Insights into Coral Reef Conservation
Current research shows Northern Guam to be composed of porous limestone bedrock which allow groundwater to flow out. One large discharge point has already been identified last year in north-western Guam at Ayuyu Cave. However, little is known about Tumon Bay which is known to comprise karst watersheds which should allow for SGD. This project has examined invisible groundwater discharge using a salinity meter and was able to detect two areas of concentrated freshwater discharges in Tumon Bay, with a few minor ones scattered throughout the bay. These seeps were found to have consistently lower salinity while pH varied, and hosted more marine life than other high salinity areas. Further unique coral growth in Tumon Bay’s inner lagoon was associated with these two freshwater discharges with the pH levels further segregating the types of coral species found during on-site observation. Two coral communities, staghorn Acropora and massive Porites, were found adjacent to the surveyed groundwater seeps. It’s inferred that lower wave energy in eastern Tumon Bay allows for greater plankton and other microbial growth leading to more heterotrophic coral growth, favoring Porites corals, while Western Tumon Bay has higher wave energy which leads to the growth of more autotrophic corals, such as the Acropora found in the first area surveyed. This is the first study to document the presence, location, and consequences of invisible freshwater discharges across the billion-dollar bay. This study gauges the effects of SGD on inner shore habitats, also providing a coral cover assessment across Tumon Bay using transects and quadrats. These discoveries allow for strategic coral planting, designated areas needing government protection, and show areas of appealing inner lagoon coral growth for tourism.
Climate Change Brings New Novel Virus
1. Research Motivation Have you ever seen news stating that spring is gradually disappearing from the Korean Peninsula? The characteristics of the four seasons are disappearing due to the impact of global warming. As supporting evidence, droughts and heatwaves continue during the rainy season, and unexpected heavy rainfall occurs during autumn. These abnormal temperature phenomena are greatly affecting agriculture. Crops wither due to untimely cold spells or summer droughts, and the proliferation of bacteria and pests worsens. We need to conduct a thorough investigation and response to such weather phenomena. Carbon is known to be the main culprit behind these abnormal temperature phenomena. We want to explore how carbon affects climate change and understand the implications it has. 2. Research Objectives The consequences of climate change, such as deforestation and rising sea levels, will cause significant damage to society as a whole. This will also have a profound impact on the survival of all living organisms on Earth. Unless industrialization is halted, global warming will continue, making it crucial to gain a proper understanding and find accurate alternatives. The damages caused by global warming are expanding the habitats of mosquitoes, which is expected to have an impact on the spread of mosquito-borne diseases. This can also influence the emergence of novel viruses similar to COVID-19. By examining past outbreaks of diseases transmitted by mosquitoes, we aim to predict and understand such occurrences, as well as explore ways to minimize global warming. 3. Expected Benefits Based on this research, a focused exploration of the ecological impacts of global warming can provide essential data to understand the effects of climate anomalies on us and prepare for them. As these phenomena are expected to worsen over time, it will be possible to develop measures to minimize the damage caused by bacterial infections and agricultural losses.
Quantitative environmental DNA metabarcoding for the enumeration of Pacific salmon (Oncorhynchus spp.)
Understanding species abundance is critical to managing and conserving planetary biodiversity. Pacific salmon (Oncorhynchus spp.) are keystone species of cultural, economic, and ecological importance in Alaska and especially Southwest Alaska. Traditional methods of enumerating salmon such as weirs and visual surveys are often costly, time-intensive, and reliant on taxonomic expertise. Environmental DNA (eDNA), which identifies and quantifies species based on DNA they shed in their habitats, is a potential cost- and time- saving alternative. The relative ease of collecting eDNA samples also enables citizen scientist involvement, expanding research coverage. Currently, more research is required to define eDNA’s potential and limits. This project investigates whether quantitative eDNA metabarcoding can accurately quantify the abundances of six fish species: the five Pacific salmon species plus rainbow trout. Water samples were collected from eight creeks in the Wood River watershed of Southwest Alaska. eDNA metabarcoding and subsequent bioinformatics processing produced a read count for each species. These were compared to visual survey counts, taken to be the true counts for the purposes of this study. Data analyses showed a positive, linear relationship between visual survey count and eDNA count for sockeye salmon. The regressions were significant for both the early (p = 0.089) and late (p = 0.030) sampling dates when 𝛼 = 0.10. eDNA detections of non-sockeye species generally corresponded to visual survey observations of species presence or absence. Overall, the results of this study support eDNA’s potential to be an alternative or supplement to standard methods for the enumeration of fish species.
ENVIRONMENTALLY FRIENDLY UPCYCLING APPROACH TO INCREASE IMPACT RESISTANCE OF REINFORCED CONCRETE STRUCTURES: USE OF INDUSTRIAL WASTE AS CONSERVATION MATERIAL
Within the scope of sustainable cities and responsible consumption, which are among the goals of sustainable development, it is aimed to contribute to life safety, defense industry, protection from disasters and economy with the new generation environmental building technologies and materials to be developed in the field of construction. It is a critical issue to protect reinforced concrete structures, piers, bridge piers, overpasses against impacts, and to reduce the damages and economic losses in disaster situations. Reinforced concrete scaffolding is the load-bearing component of the structure and its impact resistance is crucial to the overall safety of the concrete structure. Therefore, there is a need to develop technologies that can protect structures against explosion and impact loads. Within the scope of the project, environmentally friendly and low-cost concrete materials with industrial waste glass, aluminum, plastic material additives, which can be used in columns, which are the most important part in the strength of reinforced concrete structures to prevent explosion and impact damage, were produced and their strengths were analyzed. The use and design of these materials in the strength of concrete creates the originality of the project. When the results obtained in the project were examined, it was observed that the steel fiber concretes with the addition of waste glass, aluminum ring, disc, beverage can and plastic bottle were resistant to high pressure when compared with the control groups without additives, and the change in surface height after the impact test, visual analysis and load-time graphics showed this. It is seen that the additives have a cushioning effect against the impact, absorbing the energy against the force by 87.6% and increasing the strength significantly. In this project, where it is aimed to increase the strength of concrete structures by using the impact energy absorption feature of waste glass, plastic and aluminum, products with high added value are developed, contributing to the literature and the construction sector. With the large-scale use of the project, the costs spent on the disposal of waste materials will be reduced, the upcycling based on re-using the waste products will be contributed, and the loss of life and property due to impacts and explosions will be prevented.