Desert to Fertile Land: Developing TEPA‐modified montmorillonite clay as an efficient CO2 adsorbent to enhance soil fertility
Global warming is a phenomenon in which the Earth's overall temperature rises as a result of increasing concentrations of greenhouse gases in the atmosphere. Among the major greenhouse gases, carbon dioxide (CO2) is the primary greenhouse gas that contributes significantly to global warming [1,2]. The concentration of carbon dioxide in the atmosphere is rising due to human activities such as burning fossil fuels (coal, oil, natural gas), as well as changes in land use and vegetation [3]. Carbon dioxide and other gases, such as methane and nitrogen monoxide absorb infrared radiation and redirect it back to Earth, warming the planet [4]. This rise in temperature can impact ecosystems, climate, water resources, agriculture, public health, and societies in general [5]. To combat global warming and reduce carbon dioxide concentrations in the atmosphere, many countries around the world, including Saudi Arabia, are working to achieve a vision to reduce carbon emissions by reducing their carbon emissions by 278 million tons per year by 2030 in line with the Paris Agreement, for climate. The Kingdom is committed to generating 50% of its electrical energy from renewable sources by 2030. In addition to the shift in the local energy mix, the Saudi Green Initiative is implementing a number of ambitious programs and projects to reduce emissions. These programs include investing in new energy sources, promoting energy efficiency, and expanding carbon capture and storage programs [6]. Through these initiatives, the Kingdom will be able to achieve its climate goals and establish a sustainable future (Figure 1). In addition, the Paris Climate Change Agreement includes 196 countries and the European Union, covering most of the world. This agreement aims to achieve carbon neutrality by taking measures to reduce carbon dioxide emissions [7].
Quantitative environmental DNA metabarcoding for the enumeration of Pacific salmon (Oncorhynchus spp.)
Understanding species abundance is critical to managing and conserving planetary biodiversity. Pacific salmon (Oncorhynchus spp.) are keystone species of cultural, economic, and ecological importance in Alaska and especially Southwest Alaska. Traditional methods of enumerating salmon such as weirs and visual surveys are often costly, time-intensive, and reliant on taxonomic expertise. Environmental DNA (eDNA), which identifies and quantifies species based on DNA they shed in their habitats, is a potential cost- and time- saving alternative. The relative ease of collecting eDNA samples also enables citizen scientist involvement, expanding research coverage. Currently, more research is required to define eDNA’s potential and limits. This project investigates whether quantitative eDNA metabarcoding can accurately quantify the abundances of six fish species: the five Pacific salmon species plus rainbow trout. Water samples were collected from eight creeks in the Wood River watershed of Southwest Alaska. eDNA metabarcoding and subsequent bioinformatics processing produced a read count for each species. These were compared to visual survey counts, taken to be the true counts for the purposes of this study. Data analyses showed a positive, linear relationship between visual survey count and eDNA count for sockeye salmon. The regressions were significant for both the early (p = 0.089) and late (p = 0.030) sampling dates when 𝛼 = 0.10. eDNA detections of non-sockeye species generally corresponded to visual survey observations of species presence or absence. Overall, the results of this study support eDNA’s potential to be an alternative or supplement to standard methods for the enumeration of fish species.