全國中小學科展

物理與天文學

神隱風火輪-「雙股」弦波之駐波探討

傳統的「風火輪」是將酒瓶蓋打扁後穿線所製成的童玩,因容易發生危險幾乎已被遺忘。利用學姊設計的實驗裝置-『扳手』、『節拍器』及『人的聽力』,補做『轉動風火輪初始圈數』10圈 ~ 50圈的實驗。重新看實驗影片,找新方法量上萬筆數據。實驗結果得知:所看到的駐波幾乎是繩子捲成『單股』後的波動,偶而會看到繩子鬆開成『雙股』後的波動。因繩子所受張力大小前後不對稱,故在一個週期內,駐波多數時間發生在扳手由最後面往前移時、會出現2次最大值、最大振幅發生在扳手轉到最後面附近,呈週期性變化。繩長40公分、轉動初始圈數只有10圈時,適當條件下也會產生駐波。沒想到看似很簡單的童玩,竟隱藏非常深奧的物理現象!

液體膜電動機之性質與泛用性研究

若對肥皂膜通過電流,並在垂直電流的方向加高電場,只要電壓與電場超過閾值,就能夠在肥皂膜上產生旋轉。 我們的目標是製作能穩定運轉的液體膜電動機,同時持續改進精確度及操作便利性。我們調配溶液,並用電阻法測量厚度控制變因。攝錄影片匯入Tracker追蹤,分析旋轉性質。 我們了解到角速度與外加電場呈線性正相關,也了解旋轉半徑與角速度成負相關。我們認為是界面活性劑離子在電場中運動產生的效應。然而,驗證實驗卻推翻了我們的假設,不僅加入電解質沒有改變角速度,甚至純水膜也能夠旋轉,證明離子並非運動來源。 因此我們改從水分子偶極切入,通電的液體膜其實類似介電質,會因電容充電導致電極化,使液體膜上出現電荷分離,因外加電場的作用產生力矩而旋轉。此假說能夠解釋我們所有的實驗結果,我們也希望未來能立基於此,對液體膜電動機的應用領域進行實驗與研究。

Experimental Study on Pendulum and Self-designed Multi-layer-tank Water Damper for Mitigation of Structural Response

設計震動台和可調單擺模擬101大樓和調諧質量阻尼器的振動模式;並設計多層容器盛水與單擺比較,探討水深/容器長(Depth Ratio)、振幅、質量對減振效應的影響。實驗使用「振動參數」(週期、衰減係數、時間)量化減振效應。當單擺與震動台週期相近時,減振效應較佳。調整Depth Ratio使水自然擺盪週期(Tn)接近震動台週期(TV)(PR = Tn / TV≒1),易產生碎波,造成系統能量消散,減振效應顯著。震動台振幅越大,碎波發生可能性越高,減振效應越佳。當PR≒1,水質量變化對減振效應影響不顯著;若PR≠1,水質量越小,減振效應越差。實驗證實多層容器盛水的液體阻尼器可有效減振且效果優於單擺。

鉛直奈米皂膜之厚度變化

當皂膜鉛直立起後,其表面會因反射光形成干涉,利用反射光的干涉圖案可推知皂膜厚度。皂膜經單色光反射產生干涉圖案的數位相片,藉由Image J 自由軟體可分析出不同位置之光強分布,可回推對應之皂膜厚度。結果發現鉛直皂膜的側向結構具有3種類型的分布,造成這3種不同幾何結構分佈的微觀機制是因為皂膜中的微胞分布不同。 本作品將鉛直皂膜施以鉛直方向之外加電場,發現皂膜中的陽離子受到電力帶動周遭的液體運動,形成所謂的電滲透現象,電滲透可用來增厚皂膜。此種利用電場控制皂膜厚度的方法可以設計出奈米流體二極體,是一個嶄新的研究領域。

樂器研究—雙音箱柳琴

雙音箱柳琴和單音箱柳琴的不同處在於雙音箱柳琴比單音箱柳琴多加裝了一個共鳴板。我們想要了解單音箱和雙音箱柳琴的結構、發聲原理的不同。首先測量單音箱柳琴的頻率。之後把面板取下,並沿琴緣加高五公分。再次測量加高後柳琴的頻譜,又分別測量有加裝直徑十公分和直徑十八公分的圓形共鳴板的頻譜。本實驗測量三種柳琴,單音箱柳琴、加高音箱的柳琴、雙音箱柳琴。整理過測量到的頻譜圖後,發現雙音箱柳琴比單音箱柳琴更容易產生高頻,在單音箱柳琴、加高音箱的柳琴、雙音箱柳琴這三種類型的柳琴中,只有雙音箱柳琴的高頻最為顯著。另外,十八公分的共鳴版比十公分的共鳴版更能在高頻達到共鳴效果,四條弦中一弦(最細弦)可以產生最高頻率、最大響度。透過此雙音箱柳琴的實驗,希望可以將其原理應用在其他弦樂器上。

簡易方法測量電遷移率

氯化鈉水溶液滴上染料,外加互相垂直的電場和磁場後,離子受到和電流方向垂直的勞侖茲力而移動,因黏滯力作用而形成漩渦偶極子;由漩渦偶極子的位置隨時間變化,可得到漩渦偶極子的運動動量通量,進而算出鈉離子和氯離子的電遷移率和(μ++μ-)。 用氫氧化鈉水溶液實驗時,因正離子的電遷移率小於負離子,漩渦偶極子一面移動一面偏轉,由移動的位置隨時間的變化可求得鈉離子和氫氧離子的電遷移率和(μ++μ-); 由偏轉量可求得兩種離子的電遷移率差(μ--μ+)。用氯化氫水溶液實驗時,漩渦偶極子偏轉方向和前者相反,由偏轉量可求得兩種離子的電遷移率差(μ+-μ-)。 霍爾效應實驗可求得離子的電遷移率差,用氯化鈉、氫氧化鈉、氯化氫、氮氣奈米氣泡、和氧氣奈米氣泡水溶液作實驗,和漩渦偶極子法對照比較。

熱鍋上的舞者 - 聚丙烯酸鈉的Leidenfrost效應分析

將水晶寶寶放置於加熱板,會不斷跳動並發出高頻聲音。本研究透過錄音及錄影進行分析,探討其跳動的原理及特性。研究發現:水晶寶寶於加熱板溫度80°C開始出現穩定跳動,並發出高頻聲音。溫度越高,跳動高度越低且聲音頻率越高。並發現水晶寶寶為符合虎克定律之彈性固體,其聲音頻率與√k成正比,符合簡諧運動的型式。進行動力學分析發現,水晶寶寶於加熱板撞擊之恢復係數穩定於1附近震盪,且發現水晶寶寶撞擊加熱板時會噴發氣體。我們嘗試於加熱板上方放置壓電晶片進行撞擊,發現溫度越高,產生電壓越高,可透過碰撞實現能量轉換。最後結合聲音及動力學分析,提出物理模型針對觀測之現象進行解釋,論證此現象屬於高含水彈性固體的Leidenfrost效應。

Improving Particle Classification In Wimp Dark Matter Detection Using Neural Networks

In all experiments for detection of WIMP dark matter, it is essential to develop a classifier that can distinguish potential WIMP events from background radiation. Most often, clas- sifiers are developed manually, via physical modeling and empirical optimization. This is problematic for two reasons: it takes a great deal of time and effort away from developing the experiment, and the resulting classifiers often perform suboptimally (which means that a greater amount of expensive run time is required to obtain a confident experimental result). Machine learning has the potential to automate this and accelerate experimentation, and also to detect patterns that humans cannot. However, two major challenges, which are shared among several dark matter experiments, stand in the way: impure calibration data, which hinders training of models, and unpredictable physical dynamics within the detector itself. My objective was to develop a set of machine learning techniques that address these two problems, and thus more efficiently generate highly accurate classifiers. I was able to obtain raw data for two dark matter experiments which exhibit these challenges: the PICO-60 bubble chamber [2], and the DEAP-3600 liquid argon scintillator [1]. For each experiment, I developed and compared three general-purpose algorithms intended to resolve its inherent challenge (impurity and unpredictable dynamics, respectively). In PICO-60, background alpha and WIMP-like neutron calibration datasets are used for training; however, there is an impurity of 10% alphas in the neutron set. While a conventional classifier was developed (and is believed to be 100% accurate), machine learning in the form of a supervised neural network (NN) has also been previously explored, because of the benefits of automation. Unfortunately, it achieved a mean accuracy of only 80.2% – not usable as a practical replacement for conventional methods in future iterations of the experiment. In DEAP-3600, photons are absorbed by a wavelength shifting medium and re-emitted in an unpredictable direction, before being detected by one of 255 photomultiplier tubes (PMTs) around the spherical detector. The randomness severely limits the accuracy of conventional classifiers; in a simulation, the best so far removes 99.6% of alpha background, while also (undesirably) removing 91.0% of WIMP events. Because of physical limitations, simulated data is used for calibration, with 30 real-world experimental events available for testing. I have written a research paper [11] about my work on PICO-60, which has been approved by the PICO collaboration and pre-published at https://arxiv.org/abs/1811.11308. It is currently undergoing peer review for publication in Computer Physics Communications. All PICO researchers are listed on my paper for their work on the original PICO-60 experi- ment. They did not contribute to this study; I completed and documented it independently.

高電場下含界面活性劑二氧化矽-矽油液體之機械力學特性 與結構探討

本研究以添加界面活性劑、二氧化矽及矽油的電流變液作為研究對象,探討矽油的黏度以及添加界面活性劑對電流變液的影響。並希望引入此現象於以高電壓驅動動態摺紙的DLZ(dielectrorphoetic liquid zipping)結構中,增進其性能。 研究發現不同黏度的矽油會對電流變效果造成影響。以低黏度(10cst)的矽油製成的電流變液,黏度變化於6kV時可達原本黏度的2.4倍,而以高黏度(350cst)的矽油製成的電流變液,黏度變化則可達原本黏度的9.7倍。在實驗時也發現,穿透裝有電流變液比色管的光線在施加電壓後減少,黏度越大,減少的幅度越大,並與界面活性劑的存在有關。因此推論: 黏度大的矽油因分子長度較長,藉由界面活性劑作用,更容易和二氧化矽粒子形成整齊結構,因為單一矽油分子可連接更多二氧化矽顆粒。這讓電流變液的黏度改變;同時整齊的結構會使電流變液的散射能力減弱,使接收到的散射光減少。 未來將以顯微鏡直接觀察電流變液的內部結構,並以水及酒精取代界面活性劑,以了解在矽油分子長度改變以及有無添加界面活性劑下電流變液黏度變化的機制,並應用在DLZ結構中,完善原本在單純液體中只有考慮介電常數的理論,增加黏度與液體內部結構的討論。

材料的1/1&1/3OCT迴響時間測量與吸音研究

本實驗利用自製的實驗裝置及自行推導的公式,推算出材料的吸音率。 材料的吸音率,一般是送至專業的迴響實驗室測量(如:成大迴響實驗室),且單一樣品測試費用昂貴(每件樣品4~6萬元)。 我們 設計的實驗將迴響空間縮小,會遭遇到直傳音場影響大過反射音場的問題,因此利用合成音場公式將兩者分離,再利用均能音量及方向因子Q,以及吸音率、室型常數R之間的關係,建立迴響時間的函數。 複合材料運用範圍廣,但若要得知吸音率,又需花費一筆可觀費用。本實驗模組能快速、方便、經濟地得到各樣品(包含複合材料)的吸音率。同時由音頻分析可得知噪音的頻段,即可選擇最適合的材料進行裝修,達到最佳的吸音效果和最高的經濟效益。