MEDTEC - Artificial Intelligence Software for medical diagnosis optimization and analysis
In Brazil, approximately sixty million people suffer from or acquire some type of disease daily. However, the average time for blood count diagnoses, used to identify many of these diseases, remains very lengthy. This can lead to the worsening of conditions and delays in care, as well as a decrease in the patients’ quality of life. Moreover, in some cases, the waiting period can result in irreversible situations and even the death of the affected individuals. In this landscape, technological tools such as artificial intelligence software can help reduce the time taken for diagnostic reporting. In light of this, the project involves developing software to assist in the analysis of blood counts and optimize medical diagnoses. For this purpose, the methodology was divided into three stages. In the first, titled ”Medical Standardization”, a survey of the standard variables related to diseases that can be identified with the help of blood counts was conducted. Among the findings, diabetes, anemia, leukemia, dengue, polycythemia, tuberculosis, leprosy, meningitis, chlamydia, schistosomiasis, spotted fever, and malaria were the main diseases detected. Furthermore, hemoglobin, leukocytes, platelets, glucose, cholesterol, ions, and hormones were the key findings concerning the primary blood indicative factors for the mentioned diseases. In the second phase, the theoretical and practical foundations of the software were developed, based on artificial neural networks. In Python, regression models were also crafted to check the feasibility of the analyses. Finally, the last stage consisted of testing with real datasets, based on 1,227 anonymized blood counts. Among the artificial intelligence algorithm models tested, Support Vector (0.02) and Multiple Linear (0.61) had the lowest performances, while Polynomial (0.97), Random Forest (1.0), and Decision Tree (1.0) showed the best results. Given that the Random Forest and Decision Tree regression models achieved an accuracy of 1.0, while the Polynomial model scored 0.97, Support Vector 0.02, and Multiple Linear Regression 0.61, it is concluded that the blood count analysis system, with Python tools like regression, proved to be highly efficient. The closer the R² value is to 1.0, the better the programming fits the model, ensuring accurate analyses. Aside from that, in order to expand the number of analysis possible to do be done we decided to use a second tool called ”classification”, with which we made a bigger dataset to be used as a model to identify blood related diseases and the behavior of complex and diverse diseases. With that in mind, we performed a second evaluation of the models by doing an accuracy test, scored 87 percentage points and with a confusion matrix. With those results, we verified that the high performance of the tests indicates that Artificial Intelligence can be avaunt-guard to the elaboration of more efficient medical diagnosis, improving people’s lives quality and, overall, lowering the number of deaths in our country.