全國中小學科展

工程學

A Modular Construction 3D Printer

The 3D printer that we created is able to print objects out of concrete and is modular, so it can be assembled the way it is needed.

Robotic Search and Rescue

I built a robot that is able to improve safety in mines. The robot takes a series of sensor readings, do 3D mapping to compare deteriorating physical conditions in time, detect CO and CH4 levels and record video footage. All of this information is then sent back to the user. The project aims to build a robot that could decrease the amount of casualties in mines due to gas or instability. A strict engineering process, which comprised researching different features on a robot, was followed. A prototype robot was built, tested and improvements made. Some of the challenges faced, while building the prototype robot, included manoeuvrability over any type of terrain, even rough and rocky terrain. Choosing the correct driving mechanism (wheels, tracks, suspension and steering) also proved to be a very important feature that had to be kept in mind. The sensors used included, a temperature, humidity, carbon monoxide gas, as well as a methane gas sensor. A Gyro, Accelerometer and compass for easier navigation were also used. Two cameras which included a front camera for navigation and 3D mapping as well as a back camera for navigation were installed. The robot was tested over various terrains, it was able to retrieve sensor data and all of the engineering goals were reached. After the robot was built it was tested on various terrains. The robot achieved all of the engineering goals. The sensors was able to give readings, the robot 3D mapped an area and was also able to manoeuvre over rough terrain.

太陽光熱分離的神奇之旅!

作品創新地利用空氣膠研製出太陽光熱分離器,分離後的太陽光與太陽熱再分別透過太陽電池作光轉電,以及熱電晶片作熱轉電。經由完整的實驗得到:(1)本作品小面積架構(5cmx5cm)在室內以150W鹵素燈模擬太陽能結合最佳空氣膠玻璃(濃度:2.5wt.%、厚度:0.08mm)、太陽電池模組、與雙邊熱電晶片模組之最佳結構可產出48.75mW的再生電能、(2)本作品小面積架構(5cmx5cm)在戶外用太陽能結合聚焦凸透鏡、最佳空氣膠玻璃、太陽電池模組、與單邊熱電晶片模組之最佳結構可產出174.5mW的再生電能、(3)本作品大面積架構(15cmx15cm)在戶外用太陽能結合聚焦菱鏡片、最佳空氣膠玻璃、可透光太陽電池模組、雙邊太陽熱轉電模組,除了成功應用在:微小電力儲能、風扇轉動、LED燈亮、及玩具車與機器人行走外,空氣膠玻璃的透光度至少88%且隔熱度至少12°C以上,不但有助於太陽電池的光轉電與散熱降溫,更實現節能與應用科學目的。

A New Approach to Recycling Aluminum/Iron Cans

本次研究提供一個更安全、效率、節省空間的回收鐵鋁罐新方法 - 扭轉。藉由預期圓筒在扭轉過程,對於固定半徑和長度會自發產生的摺痕數,事先在表面壓痕,一旦喝完飲料,只要輕輕一扭,馬上能將罐子安全地變扁,不用擔心割到手或罐子在踩壓時飛噴傷人。 我們系統地從實驗觀察和歸納不同半徑、長度、厚度、材料及拉伸力對於圓筒摺痕數目 (N)和偏斜角(α)的影響,並從幾何和能量考量,推導出符合實驗結果的簡單公式,得到不同參數下的擬合曲線,用來實際製作各種材料的回收模型。 由於日常容器有其他形體,我們接下來推廣到兩端半徑不同的圓筒和正多角柱。藉由實 驗數據及修正圓筒理論,得到較廣義的規律摺痕理論公式,預期同樣能夠利用此公式來設計摺痕;正多角柱與圓筒類似,在扭轉後產生規律的摺痕,只是數目和種類需要修正,因此也能夠利用扭轉達到壓縮的效果。

運用DDPG建構氣動式肌肉上臂運動強化學習模型

研究探討透過強化學習讓機器學習各種人類上臂運動。延續「運用氣動肌肉缸模擬上臂肌肉控制之研究」,透過有限的動作組可以控制上臂肌肉,然而因應環境條件的多變,模擬人類透過學習產生多樣多變的反應,在仿生的領域中有其必要。比較強化學習中的Actor-Critic與 DDPG (Deep Deterministic Policy Gradient)兩種模式,我們透過 Gym 建構具動作與環境限制的簡易訓練環境。比較兩個模型的細節後,最後選用了 DDPG 為我們主要的強化學習方法。首先我們利用 Tensorflow 模擬學習模式並記錄模擬移動的學習過程。我們運用到仿生手臂的實體,藉由影像辨識取得手臂的狀態,回饋至學習模型。仿生手臂運用學習資料進行移動,接著我們觀測系統所學習的移動是否可完成指定動作或工作。在軟體模擬中,我們證實了藉由達成數次目標的學習後,DDPG 可完成較細緻的移動。而 DDPG 在仿生手臂上的實作,則需透過輸出動作給氣動仿生手臂系統,來控制仿生手臂移動至目標位置。在未來,機器人將不單單只是運用馬達來當作動力來源,也能運用氣動肌肉缸成為動力元件。並且,人形機器人將會做出更像真實人體的動作。

風力罩得住酷旋發電機

本研究共設計十二個實驗,探討垂直型風力發電機如何將各方吹來的風充分利用,首先設計能減少風力扇葉轉軸轉動摩擦力的軸承,接著製作導流罩以收集所有吹進來的風並提高 磁動生電的轉換效率。我們製作的風力發電機將來自四面八方的自然風有效利用,具積少成 多的集風特性,輸出電壓可達30V以上,並能針對鋰電池充電,發揮以時間換取空間的特殊功能,且因為體積小,非常適合於臺灣地狹人稠而且風力不強的環境。我們將自製的發電機實際應用在學校走廊、樓梯間以及樓頂進行發電,可以提供夜間照明,達到自給自足的綠色能源目標。

真的是23.5度嗎?-以天文及氣象資料探討固定型太陽能板最佳架設傾斜角

太陽能板一架設完成就要發電20年,若架設角度不正確,會嚴重影響長達20年整體發電量。那太陽能板最佳架設角度為何?又如何確保施工時能正確架設該最佳角度?為解決上述問題,本科展作品,藉由理論計算、電腦模擬實驗與實際系統量測交互比較驗證,依據太陽運行軌跡與氣候資料,逐步探討出固定型太陽能板最佳架設角度。我們依序進行9個實驗,成功驗證一套能依據太陽能板所在緯度與方位角來決定出固定型太陽能板最佳架設傾斜角的方法。更進一步使用數值方法以曲線揉合(curve fitting)法來得出公式,使其不需大量運算即可算出固定型太陽能板最佳架設傾斜角。最後,本科展作品使用BrainGo控制板、直線雷射、GPS、電子羅盤與陀螺儀,成功研製一固定型太陽能板架設角度標示儀,能有效幫助業者與DIY者輕易架設正確固定型太陽能板架設最佳角度,有效確保20年的太陽能系統發電效率。

太陽軌跡在車輛儲能之創新研究

本研究探討太陽軌跡在車輛儲能之創新應用,使得太陽電池以簡單的方法得到最大的吸收能量。首先,利用Stellarium免費天文軟體,完成一個太陽電池最佳方位角與仰角的計算公式,基於光學與鏡面反射原理之瞭解,提出全新的鏡面最佳轉角定理,使鏡面反射之轉角得以迅速精確計算。本文引入GPS衛星定位功能,將這個太陽電池能量追蹤方法,由靜態的的地面應用,推展到動態的車輛應用。最後,由本實驗結果顯示,利用本文提出的創新研究,與單純平放太陽電池之儲能作法比較,若將反射鏡或者太陽電池隨時對準最佳方位角與仰角,可以獲得多出20 %〜52 % 的免費能量!

Design and Prototyping of a Low-Cost Ventilator for Rural Hospitals

This report includes the design and prototyping of a portable automatic bag-valve mask (BVM), or commonly known as the Ambu bag. This development is for use in emergency transport, resource-poor environments, and mass casualty cases like the COVID-19 pandemic. This device replaces the need for human operators whose job is to squeeze the BVMs for extended periods of time. The prototype is made from a stainless-steel skeleton, measuring 470 x 240 x 230 mm, with the addition of acrylic coverings. A repurposed motor from a car is used to drive the squeezing arm. The speed of the arm for inspiration and expiration along with the pausing time between each breath can be adjusted with this prototype. It also features an LCD screen to display the arm speed, along with real-time pressure graph displayed on both phones and computer monitors. For future versions, an app is to be developed to enable the control of the automatic bag-valve mask from phones and tablets, further creating ease for users and increasing portability. Additionally, important requirements will be added: alarm system for over pressurization, control for inspiration to expiration ratio, number of breaths per minute, control for tidal volume, pressure relief valve, and assist-control mode. The cost of this prototype is approximately $430. With this design of an automatic BVM, it allows for the production of a ventilator-like technology that will be able to perform main functions of basic ventilators at a fraction of the current cost.

三槽式微生物燃料電池及不同尿液中微生物產電效率影響之探討

為尋找綠色替代能源,科學家早在1970年就發明出微生物燃料電池(microbial fuel cells, MFCs),將微生物當作催化劑應用在燃料電池中(Suzuki,1976)。人體每天都會大量排出含有有機物質的尿液,容易取得且適合用來作為MFC的基質,若同時能在尿斗中找到具有較高產電效率的微生物,即可達到廁所能源自給化的效益。在本實驗中,我們取用尿斗底部尿液做離心,並圖盤培養,挑選出四種微生物與陰溝腸桿菌(Enterobacter cloacae),將其分別定量並移植至對應體積液態LB,並待其OD值成長至0.5,再透過簡易MFC進行電壓比較。經數據比較,我們發現a菌與b有最高及次高的平均電壓。近幾年微生物燃料電池研究大部分以混菌為主,所以最後篩選出其中這兩種微生物,作為往後自創三槽MFC實驗的菌種。而自創三槽MFC是透過改良傳統反應槽的結構來克服電子傳遞效率的問題,希望能設計出實際應用於廁所中的微生物燃料電池。