全國中小學科展

工程學

Designing Multifunctional Intelligent Autonomous Underwater Remote Operating Vehicle to perform “Search and Rescue” in the event of extreme weather flooding condition

This underwater remote operating vehicle (ROV) is designed with and without tethered operation. The operator can control the ROV from the real time first-person view in graphical user interface combined with sonar and object detection function when the tether is attached to perform search and rescue. The control tether with fiber optic lighting cable establishes a guided link medium between the possible search victim location and the rescue team. When the tether is detached, rapid deployment by a predefined set of instruction to achieve further operation range. The intelligent technologies of signal processing were used for object recognition, collision detection and sonar scanning data to enhance underwater operation. Autonomous driving is based on software development with limited capability to run in unrestricted open areas. We have achieved the design intent and confirmed the performance data in the laboratory boundary conditions.

太陽軌跡在車輛儲能之創新研究

本研究探討太陽軌跡在車輛儲能之創新應用,使得太陽電池以簡單的方法得到最大的吸收能量。首先,利用Stellarium免費天文軟體,完成一個太陽電池最佳方位角與仰角的計算公式,基於光學與鏡面反射原理之瞭解,提出全新的鏡面最佳轉角定理,使鏡面反射之轉角得以迅速精確計算。本文引入GPS衛星定位功能,將這個太陽電池能量追蹤方法,由靜態的的地面應用,推展到動態的車輛應用。最後,由本實驗結果顯示,利用本文提出的創新研究,與單純平放太陽電池之儲能作法比較,若將反射鏡或者太陽電池隨時對準最佳方位角與仰角,可以獲得多出20 %〜52 % 的免費能量!

HYBRID COMPOSITE FROM X-RAY WASTE

This study considered the tensile and flexural characterization of new lighter and cheaper hybrid composite materials to replace the existing insert panel for the currently available bulletproof vest. The materials chosen included a natural fibre, i.e., kenaf fibre, chemically treated with sodium hydroxide solution, and, as a means of recycling, used x-ray films with a surface treatment. Using the traditional hand lay-up method, the materials were fabricated into seven layers of different configurations, which were then subjected to tensile and flexural tests. The findings showed that one of the configurations that consisted of both treated materials had a tensile strength of 396.9M Pa, which is quite strong, and a flexural modulus of 6.24G Pa, which makes it flexible enough to be made into wearable equipment. This configuration was then chosen to be the base design for the specimen subjected to impact test. The interfacial bond between the two distinct materials proved to be a major issue, even with the help of fibre treatment. Therefore, some improvements need to be made for the material to be comparable to existing materials performance-wise hence making this configuration suitable for ballistic application.

三槽式微生物燃料電池及不同尿液中微生物產電效率影響之探討

為尋找綠色替代能源,科學家早在1970年就發明出微生物燃料電池(microbial fuel cells, MFCs),將微生物當作催化劑應用在燃料電池中(Suzuki,1976)。人體每天都會大量排出含有有機物質的尿液,容易取得且適合用來作為MFC的基質,若同時能在尿斗中找到具有較高產電效率的微生物,即可達到廁所能源自給化的效益。在本實驗中,我們取用尿斗底部尿液做離心,並圖盤培養,挑選出四種微生物與陰溝腸桿菌(Enterobacter cloacae),將其分別定量並移植至對應體積液態LB,並待其OD值成長至0.5,再透過簡易MFC進行電壓比較。經數據比較,我們發現a菌與b有最高及次高的平均電壓。近幾年微生物燃料電池研究大部分以混菌為主,所以最後篩選出其中這兩種微生物,作為往後自創三槽MFC實驗的菌種。而自創三槽MFC是透過改良傳統反應槽的結構來克服電子傳遞效率的問題,希望能設計出實際應用於廁所中的微生物燃料電池。

陶瓷燒成新技術- 以家用微波爐及自製集熱盒燒製高溫陶瓷之研究Research on firing high temperature ceramics with household microware oven and self-made heat collection box

本研究以家用微波爐及自製集熱盒燒製高溫陶瓷,用於家用微波爐的集熱盒材料的材質以玻璃纖維為主體為佳,集熱材料使用碳化矽顆粒級配重量比為1:3(320目碳化矽:180目碳化矽) 有最佳的微波吸熱效率並半浸泡的方式沾黏3.02mm (10層)最好;集熱盒玻璃纖維與集熱材料碳化矽之間的高溫黏著劑,以體積比3:7(矽酸鈉:水)為最佳配比。以家用微波爐搭配自製集熱盒可於26.5分鐘便可燒結陶瓷上釉作品,與傳統電窯需480分鐘比較可大幅減少94.48%的燒製時間,且其耗費的能源可省去89.44%的電費,以家用微波爐及自製集熱盒燒製之陶瓷品與傳統電窯燒製之陶瓷品在洛式硬度儀上測試結果無明顯差異,是未來極具發展性的陶瓷燒成技術。

An Analysis and Optimization of Double Parallelogram Lifting Mechanism

Double Parallelogram Lifting Mechanism (DPLM) is a compact and stable lifting mechanism with a large extension range widely adopted in robot designs. Rubber bands and springs are often installed on the DPLM to lighten the motors' load and maintain its height, yet the installation positions are often obtained through trial and error. This project aims at finding the optimal rubber band installation positions for DPLM using modeling and optimization techniques. A mathematical model which describes the forces and moments acting on all the linkages of DPLM was derived based on the conditions for the static equilibrium and verified with a 3D simulation software. A genetic algorithm (GA) was implemented to optimize rubber band installation positions, which managed to find solutions with the overall root-mean-square- error (RMSE) of the net moment less than 2 for 2 to 6 rubber bands. A further statistical analysis of 50000 random rubber band samples showed that installing rubber bands in triangles is the best solution with the overall lowest RMSE. A test was conducted with a prototype of the DPLM and the results were consistent with our model and optimization. This project derived and verified a mathematical model for the DPLM, and found the optimal way and positions to install rubber bands. The results of this project provides a theoretical basis for controlling DPLM with rubber bands, allowing it to be further adopted in industrial robots that require repetitive lifting and lowering such as inspection robots and aerial work platforms.

探討造孔劑粒徑與添加量對天然水膠軟骨支架之孔洞型態影響

軟骨修復目前仍是臨床治療上的挑戰,組織工程扮演著可行性的解決方案。軟骨修復中,軟骨支架是關鍵的要素。本研究使用天然高分子水膠透過溶劑鑄造鹽洗法製備軟骨支架,去探討造孔劑粒徑大小(大粒徑:170;小粒徑:250)與添加量(低量:2克;高量4克)是否會影響製成軟骨支架的物化性質,以及會影響前驅骨母細胞分化的能力。透過觀察所製成的四種軟骨支架顯微結構,分別測試其吸水量、降解性、抗壓強度與交聯度,並測試其生物相容性與促進前驅骨母細胞增生及分化之能力。結果發現,造孔劑粒徑大且高添加量的軟骨支架 (170-4組別),雖抗壓強度僅 0.0177 MPa,每克支架吸水量達 14.72 mL ,浸泡於試劑 30 天後,支架不會明顯降解,且不具細胞毒性,促進前驅骨母細胞增生與分化的能力最佳,因此可作為適用於軟骨缺損修復之組織工程支架,提高軟骨修復之成效。

Using P.I.P. to strengthen roads: Plastic incinerated by plastic

People have become accustomed to single-use plastics. These are plastics that are used once only and are then thrown away or recycled. A piece of plastic can only be recycled 2-3 times before it is of bad quality and can no longer be of use. (Achyut K. Panda, 2019). Plastic waste fills up landfills and oceans, becoming hazardous and harmful to wildlife, while emitting greenhouse gasses. Alternatives, such as metal straws and paper bags have turned out inefficient and plastic is still a great need in society. Another way of getting rid of waste plastic is to burn it. Fossil fuels such as coal and natural gas are being utilised to burn plastic in industry. This causes many harmful emissions, such as carbon dioxide and carbon monoxide released from burning the plastic. It results in more damage being done than just leaving the plastic in a landfill. These emissions can be cleaned before being released into the atmosphere. Plastic is made of petroleum, so when it is burned it is converted back into a fuel. Plastic can be burned under controlled conditions to create a fuel source that can be used, thereby utilising the waste plastic. The research conducted aims to investigate the use of plastic waste to burn other plastic to create a renewable fuel source and to eliminate plastic waste.

What is the relationship between angular velocity and power efficiency of a twin blanded single rotor helicopter system, in hover?

A traditional helicopter requires 60 - 80% more power to hover than when in forward or lateral flight, making the manoeuvre extremely power inefficient. To maximise efficiency, industrially many properties of the helicopter and rotor have been changed and tested, for example: optimising blade shape, fuselage shape and changing weights of different helicopter components. This report in particular aims to find a relationship between power efficiency and angular velocity for a twin bladed hovering helicopter with a single rotor. The angular velocity of a blade measures the frequency of its revolution about a fixed point. A theoretical approach was first taken and then justified with empirical data. Firstly, a model for power efficiency was derived with William Froude’s momentum and blade element theory. The efficiency equations incorporated the thrust and power coefficients. Therefore, the research focused on determining values for these coefficients by manipulating equations, using industrial specifications and simulations from the XFOIL software. In order to validate the accuracy for such theoretically generated data, an experiment was conducted for a comparison. The theoretical and empirical data were concurrent, as they followed a similar trend and the empirical values overlapped within the theoretical error bars. The power efficiency for different angular velocities were then found by substituting values for the coefficients. The results demonstrated a positive relationship; where, as angular velocity increases, power efficiency increases too, then plateaus and repeats the same trend once again. The research raises many questions and could be extended by determining if a similar relationship exists for tri-copters and quadcopters.

Autonomous Vehicle

This is the self-driving and navigating vehicle which follows a track. This robot is made by our group. We made this robot together assembling the parts. This robot is commonly used in industries to shift goods and product. In this robot we have arranged all the things also metal detector which buzz when a metal is detected under it. This robot helps a lot in industrial life and is also easy to make if we learn the steps. This robot also needs programming to make it work. The programming software used for it is known as Arduino IDE. This is the figure of this robot in industries. Here the people are keeping goods in the pickup and shifting them. This robot can also run in white track, only if we do the programming right for the white track. Nowadays in cars too this type of system is used like example: Tesla model X. In the car this system is used and to avoid the obstacles something named Lidar is used. To make this vehicle follow its track and the motor to run different things are used like IR Sensor, and L298N motor driver module respectively.