全國中小學科展

工程學

Using EEG Neuro-Feedback technology to control a prosthetic hand

Unaffordable healthcare and excessive plastic waste are both alarming issues that are plaguing modern society. Recent studies conducted by the World Health Organisation (WHO) report that about 15% of the world's population suffer from a form of disability, of which 50% of the demographic cannot afford adequate health care. Furthermore, 8 million metric tons of plastic annually enter our oceans (apart from the 150 metric tons that currently circulate our oceans!). In conjunction to the global plastic pollution crisis, unnecessary invasive surgery is currently being done on amputees. Many of these desperate patients are forced to pay exorbitant prices in order to live a normal life with bionic prosthetics. The solution… Project Limbs - an EEG, 3D printed prosthetic printed from recycled plastic. Signal processors will be implemented to build an affordable and easy-to-use ‘mind controlled prosthetic hand’, that requires no invasive surgery.

Designing Multifunctional Intelligent Autonomous Underwater Remote Operating Vehicle to perform “Search and Rescue” in the event of extreme weather flooding condition

This underwater remote operating vehicle (ROV) is designed with and without tethered operation. The operator can control the ROV from the real time first-person view in graphical user interface combined with sonar and object detection function when the tether is attached to perform search and rescue. The control tether with fiber optic lighting cable establishes a guided link medium between the possible search victim location and the rescue team. When the tether is detached, rapid deployment by a predefined set of instruction to achieve further operation range. The intelligent technologies of signal processing were used for object recognition, collision detection and sonar scanning data to enhance underwater operation. Autonomous driving is based on software development with limited capability to run in unrestricted open areas. We have achieved the design intent and confirmed the performance data in the laboratory boundary conditions.

三槽式微生物燃料電池及不同尿液中微生物產電效率影響之探討

為尋找綠色替代能源,科學家早在1970年就發明出微生物燃料電池(microbial fuel cells, MFCs),將微生物當作催化劑應用在燃料電池中(Suzuki,1976)。人體每天都會大量排出含有有機物質的尿液,容易取得且適合用來作為MFC的基質,若同時能在尿斗中找到具有較高產電效率的微生物,即可達到廁所能源自給化的效益。在本實驗中,我們取用尿斗底部尿液做離心,並圖盤培養,挑選出四種微生物與陰溝腸桿菌(Enterobacter cloacae),將其分別定量並移植至對應體積液態LB,並待其OD值成長至0.5,再透過簡易MFC進行電壓比較。經數據比較,我們發現a菌與b有最高及次高的平均電壓。近幾年微生物燃料電池研究大部分以混菌為主,所以最後篩選出其中這兩種微生物,作為往後自創三槽MFC實驗的菌種。而自創三槽MFC是透過改良傳統反應槽的結構來克服電子傳遞效率的問題,希望能設計出實際應用於廁所中的微生物燃料電池。

HYBRID COMPOSITE FROM X-RAY WASTE

This study considered the tensile and flexural characterization of new lighter and cheaper hybrid composite materials to replace the existing insert panel for the currently available bulletproof vest. The materials chosen included a natural fibre, i.e., kenaf fibre, chemically treated with sodium hydroxide solution, and, as a means of recycling, used x-ray films with a surface treatment. Using the traditional hand lay-up method, the materials were fabricated into seven layers of different configurations, which were then subjected to tensile and flexural tests. The findings showed that one of the configurations that consisted of both treated materials had a tensile strength of 396.9M Pa, which is quite strong, and a flexural modulus of 6.24G Pa, which makes it flexible enough to be made into wearable equipment. This configuration was then chosen to be the base design for the specimen subjected to impact test. The interfacial bond between the two distinct materials proved to be a major issue, even with the help of fibre treatment. Therefore, some improvements need to be made for the material to be comparable to existing materials performance-wise hence making this configuration suitable for ballistic application.

探討造孔劑粒徑與添加量對天然水膠軟骨支架之孔洞型態影響

軟骨修復目前仍是臨床治療上的挑戰,組織工程扮演著可行性的解決方案。軟骨修復中,軟骨支架是關鍵的要素。本研究使用天然高分子水膠透過溶劑鑄造鹽洗法製備軟骨支架,去探討造孔劑粒徑大小(大粒徑:170;小粒徑:250)與添加量(低量:2克;高量4克)是否會影響製成軟骨支架的物化性質,以及會影響前驅骨母細胞分化的能力。透過觀察所製成的四種軟骨支架顯微結構,分別測試其吸水量、降解性、抗壓強度與交聯度,並測試其生物相容性與促進前驅骨母細胞增生及分化之能力。結果發現,造孔劑粒徑大且高添加量的軟骨支架 (170-4組別),雖抗壓強度僅 0.0177 MPa,每克支架吸水量達 14.72 mL ,浸泡於試劑 30 天後,支架不會明顯降解,且不具細胞毒性,促進前驅骨母細胞增生與分化的能力最佳,因此可作為適用於軟骨缺損修復之組織工程支架,提高軟骨修復之成效。

陶瓷燒成新技術- 以家用微波爐及自製集熱盒燒製高溫陶瓷之研究Research on firing high temperature ceramics with household microware oven and self-made heat collection box

本研究以家用微波爐及自製集熱盒燒製高溫陶瓷,用於家用微波爐的集熱盒材料的材質以玻璃纖維為主體為佳,集熱材料使用碳化矽顆粒級配重量比為1:3(320目碳化矽:180目碳化矽) 有最佳的微波吸熱效率並半浸泡的方式沾黏3.02mm (10層)最好;集熱盒玻璃纖維與集熱材料碳化矽之間的高溫黏著劑,以體積比3:7(矽酸鈉:水)為最佳配比。以家用微波爐搭配自製集熱盒可於26.5分鐘便可燒結陶瓷上釉作品,與傳統電窯需480分鐘比較可大幅減少94.48%的燒製時間,且其耗費的能源可省去89.44%的電費,以家用微波爐及自製集熱盒燒製之陶瓷品與傳統電窯燒製之陶瓷品在洛式硬度儀上測試結果無明顯差異,是未來極具發展性的陶瓷燒成技術。

結合物體辨識於室內自主定位探勘系統

本研究透過ROS(機器人運作系統)實作一個結合自由探勘、SLAM(同步定位及地圖構建)及物體辨識之機器人系統。利用ROS機體與程式軟體分離的優點,本研究開發出的系統並不僅侷限於在一種機體上使用,對於任何能安裝ROS或與ROS連結之機體都能使用,供各式各樣的服務做為一系統性的路徑規劃器及運動基座。除了導航功能外,機器人透過攝影機得以判斷自己現在身處的環境而並非單純繪製地圖,且能讓人更容易地對機器人下達指令;更因其特化的避障機制,本研究的系統很適合在日常辦公室工作環境中做為助手。以實際環境及模擬器探討此系統擅長及較不適用的環境,呈現目前機器人系統的運作能力。

LENS WITH VARIABLE OPTICAL CHARACTERISTICS

Research work on creating a lens, the optical power can be changed depending on human needs. Most people have visual impairments that need to be corrected with surgery or optical devices (glasses and contact lenses). The optical characteristics of the human eye vary depending on age, health, intensity of visual load. We propose to give people the opportunity to smoothly adjust the optical power of the spectacle lens by changing the transparent tubes between the two windows of transparent films. Experimental studies have shown the possibility of adjusting the optical power of the proposed line in a wide range. Existing devices and materials for changing the optical power of the line are analyzed. The design of a lens with variable optical characteristics is proposed, which is created from two window films, the space between which is filled with liquid. Publicly available materials for the outer shell of the lens and liquid for its filling. The effect of the amount of liquid to be filled on the optical power of the lens was experimentally determined. The formula for experimental finding of focal length of a lens is entered. Novelty is impossible because you can use the lens in another field. For example, in the future it is planned to perform an experiment with a lens system to create, for example, a telescope.

Autonomous Vehicle

This is the self-driving and navigating vehicle which follows a track. This robot is made by our group. We made this robot together assembling the parts. This robot is commonly used in industries to shift goods and product. In this robot we have arranged all the things also metal detector which buzz when a metal is detected under it. This robot helps a lot in industrial life and is also easy to make if we learn the steps. This robot also needs programming to make it work. The programming software used for it is known as Arduino IDE. This is the figure of this robot in industries. Here the people are keeping goods in the pickup and shifting them. This robot can also run in white track, only if we do the programming right for the white track. Nowadays in cars too this type of system is used like example: Tesla model X. In the car this system is used and to avoid the obstacles something named Lidar is used. To make this vehicle follow its track and the motor to run different things are used like IR Sensor, and L298N motor driver module respectively.

Using P.I.P. to strengthen roads: Plastic incinerated by plastic

People have become accustomed to single-use plastics. These are plastics that are used once only and are then thrown away or recycled. A piece of plastic can only be recycled 2-3 times before it is of bad quality and can no longer be of use. (Achyut K. Panda, 2019). Plastic waste fills up landfills and oceans, becoming hazardous and harmful to wildlife, while emitting greenhouse gasses. Alternatives, such as metal straws and paper bags have turned out inefficient and plastic is still a great need in society. Another way of getting rid of waste plastic is to burn it. Fossil fuels such as coal and natural gas are being utilised to burn plastic in industry. This causes many harmful emissions, such as carbon dioxide and carbon monoxide released from burning the plastic. It results in more damage being done than just leaving the plastic in a landfill. These emissions can be cleaned before being released into the atmosphere. Plastic is made of petroleum, so when it is burned it is converted back into a fuel. Plastic can be burned under controlled conditions to create a fuel source that can be used, thereby utilising the waste plastic. The research conducted aims to investigate the use of plastic waste to burn other plastic to create a renewable fuel source and to eliminate plastic waste.