Prototyping a Compact Multi-Format Optical Transmitter for Next Generation Regional and Long Haul Terabit Networks
The last two decades have seen 60% annual growth rate (AGR) in the global IP traffic and it is expected that the AGR will keep the exponential growth in the next five years. Recent advances in digital signal processing enabled the implementation of the dual polarization (DP) optical coherent digital receivers, which substantially improved their performance. The goal of this research is to develop a prototype of a compact superchannel flexible DP M-ary quadrature amplitude modulation (MQAM) optical transmitter and demonstrate its reconfigurability to accommodate baud rates ranging from 8-32 Gbaud∕s to achieve 1 Tb/s and beyond using the same hardware. The research work consists of three phases; Phase I is the study of transmitter electrical and optical parts; Phase II investigates the potential configurations for frequency comb generator circuit; Phase III deals with the superchannel experimental prototype. The results obtained so far are pertaining to phase I and phase II with some preliminary experimental validation pertaining to phase III. The experimental results show that the measured component characteristics are matched with the components specifications data sheets. Additionally, the designed frequency comb generator was able to create up to 9 optical subcarriers with flat gain of 0.5 dB amplitude. Transmission over optical subcarriers has been attempted using standard optical transmitter. These results show promise towards the generation of a variable data rate up to 1Tb∕s. IEEE and ITU-T standardization effort considered these data rates to appear around 2017, and are intended for Next Generation Regional/Long-haul Networks.
An Innovative Design of Enhanced-Performance Solar Panel Using Heat Pipe and Thermoelectric Generator
Solar energy is a main source of energy that is expected to play a vital role in fulfilling the future global demand of electricity. Design of advanced photovoltaic (PV) system with high electric conversion efficiency is the key for collecting solar energy. A major obstacle hindering useful PV utilization is the deterioration of solar cell efficiency with temperature. The present results of experimentation have shown that there occurs a reduction of approximately 33% in the solar panel efficiency as the operating temperature increases from 45 °C to 68 °C at 1000 W/m2. Therefore, an innovative design of enhanced-performance solar panel using micro flat heat pipe (HP) and thermoelectric generator (TEG) is proposed and experimentally investigated in the presented project. To operate HP and TEG at highest possible efficiency, the condensation section of HP is innovatively cooled by utilize the condensed water inside the evaporator of air conditioner (which is usually between 5-7 °C). Two different types of silicon panel are used in the study: monocrystalline solar panel and polycrystalline solar panel. The results showed that a reduction in average solar panel temperature up to 25% is obtained. In addition, produced power was increased by as much as 50% when solar panel was cooled by the heat pipe. Finally, the feasibility study and cost analysis of the proposed hybrid system are discussed in details and presented.
Improving Spinal Fusions: Redesigning the Pedicle Probe to Prevent Vertebral Breaches
Pedicle probes are medical devices used by surgeons during spinal fusions for patients with conditions such as scoliosis and spinal fractures. The probe creates pilot holes to guide the placement of pedicle screws in vertebrae. The screws are then connected with a metal rod to stabilize the spine. Twenty-nine percent of patients who undergo spinal fusions suffer from vertebral breaches – accidental damage to the spinal cord – which cause complications such as infection, motor defects, and in many cases paralysis. My goal was to make spinal fusions safer by redesigning the pedicle probe to provide surgeons with instantaneous feedback on the probe’s location, enabling them to more accurately place pedicle screws. The pedicle probe I developed takes advantage of the difference in density between the inner cancellous (spongy) bone and the outer cortical (compact) bone found in vertebrae. Cortical bone is avoided by monitoring the cannulation force – the force required to insert the probe. When the probe contacts denser cortical tissue, it warns the user by providing tactile and visual feedback through a vibration motor and an LED. This enables the surgeon to redirect the probe and advance down the optimum path, preventing a possible breach. It proved successful in preventing breaches on lamb vertebrae, which closely resemble human vertebrae. This novel device improves feedback to the surgeon and eliminates the need for costly and potentially harmful ionizing radiation exposure. Furthermore, it does not depend on, or require, any preoperative imaging. The cost of manufacturing the improved probe is less than $42 USD (NT$1297). Results of patent searches for 加拿大, the 美國, and Europe suggest that the redesigned probe is unique in predicting and preventing breaches in spinal fusions based on predetermined force threshold values. The probe is also unique in enabling personalized procedures in spinal fusions for those with complications, through calibrating a control (force) limit based on tissue samples prior to the procedure. Enhancing a surgeon’s ability to determine an appropriate path for pedicle screws through a sensor-enabled probe has the potential to significantly reduce the incidence of vertebral breaches during spinal fusion surgery.
Androcopter, using smartphones as flightcontrollers for Quadrocopters
This project proposes that smartphones are capable of steering a quadcopter, doubling as a flight controller unit. This means that sensor results from the smartphone’s IMU (inertial measurement unit) are compared with steering commands from the pilot received over Wi-Fi or a RC-transmitter. The idea behind this project was to build a cheap flight control for a quadcopter. Smartphones seemed to be the perfect device because of their dominance in the market. The first step was constructing the quadcopter’s frame. I first designed the frame on AutoCAD and then built a prototype out of aluminium. My search for a possibility to connect the engines or low level peripherals to a smartphone led to the «IOIO-Board». After collecting sufficient information about sensor fusion and control theory I started working on my own controller. Due to the frame’s large size the quadcopter is very stable and best suited for aerial photography. Engine control by smartphone using an «IOIO-Board» is fast enough for flight. A smartphone possesses everything needed to control a quadcopter. The disadvantage of using a smartphone is that the processor has to calculate multiple applications simultaneously. This makes it more difficult to guarantee the correct timing of operations. Nevertheless, external influences such as phone calls do not influence the flight behavior of the quadcopter. As work in progress I have experimented with the implementation of GPS and an onboard camera.