SeedBot: Low-Cost Seeding Robot for Agricultural Applications
This paper presents a semi-autonomous seeding robot which is based on both electrical and mechanical platforms that perform advance agriculture process. SeedBot composed of four components: drilling mechanism, body of robot, seed container and paving mechanism. Other than those components the sensor system and the control system are also discussed. The aim of this study is designing and building a low-cost robotic system to automate and optimize process during farming especially for personal usage. This study demonstrates that semi-autonomous farming has crucial advantages over conventional farming. In addition to that, SeedBot provides safer, requires less manpower and precise farming than usual methods that we have so far.
FABRICATION AND CHARACTERIZATION OF CARBON NANOTUBE DOPED PHOTOVOLTAIC CELLS
Nowadays, the increase in population and the rapid depletion of nonrenewable energy sources brings the need for energy. In this case, scientists are forced to develop technologies by using renewable energy sources. Sun is the unlimited and renewable energy source. Organic solar cells absorb the light from the sun by the active polymer layer and transform it into electrical power. Organic solar cells are advantageous than inorganic ones because of being low-cost, easy-to-use and proper for large scale applications. In this project, it is aimed to produce organic solar cells by using specific amounts of carbon nanotube (CNT) doping. According to this aim, it is detected by using the fluorescence spectroscopy that CNTs can be used in organic solar cells. Later, the homogenous distribution of doping SWCNT into donor material was displayed by AFM, and correct proportion of SWCNTs are chosen by those images. In order to increase the efficiency of organic solar cell SWCNT doped P3HT was used as donor molecule. The acceptor molecule was PCBM in here. Surface characterization of prepared samples was made by Atomic Force Microscope (AFM), while electrical characterization of them is done with airless environment cabin (glove-box) system in nitrogen environment. As a result, devices prepared with addition of cyclohexanone in P3HT: SWCNT%:PCBM new load paths to carbon nanotubes were provided, as a result of the measurements short circuit current obtained was raised from the reference to 53%. The best yields were found as 2.24% in 0.2% SWCNT doped devices. This result shows efficiency is healed according to the reference rate as 64%. In this study, certain amounts of carbon nanotube doped organic solar cells were produced, which are highly efficient rather than traditional organic solar cells and low cost, easy-to-produce rather than inorganic solar cells, by using environmentally friendly materials.
Development of a compact, self-stabilizing handheld camera mount
My purpose of the Research was build a small, compact device for the GoPro, which minimizes shocks that are typically caused by running and makes the video stable. The device must fit into a backpack and must be designed for the GoPro. This scenario raised two central questions for me: Which laws of physics are used for the stabilization of the camera? How can those laws of physics constructively be transformed into a working device? I have built four prototypes. To know which prototype was the best, I compared them and gained data into diagrams. The result with the last prototype was very impressive and encouraging, whether your are walking, running or skiing, the videos were no longer shaky. My final prototype consisted of a hollow tube which extended vertically. My conclusions: First the handheld camera mount mustn't be too light, as the inertia of the device is too low. Second it mustn't be too heavy, because you normally have to hold it over a certain time interval. Inertia as well as lever principal were essential to produce a smooth video. The most difficult part to build was the fully gimbaled suspension because it requires as little friction as possible and it must be precise and solid.
Fabrication of Hydrophobic Coatings Using the Sol-Gel Method
The aim of our research is to produce superhydrophobic coatings on both glass and cloth substrates in order to achieve high contact angles and low sliding angles for self-cleaning. In addition, we aim to modify these coatings to be as transparent as possible so as not to interfere with the aesthetics of the objects which will be coated. To achieve this goal, we synthesised a solution using 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (a type of FAS), silica nanoparticles (SiO2), tetraethyl orthosilicate (TEOS), (3-glycidyloxypropyl) trimethoxysilane (Glymo) and deionised water. Using the convenient sol-gel method, coatings of 20% and 30% by weight of FAS-SiO2 nanoparticles were prepared on glass and cotton substrates. It was found that coatings containing 30% by weight of FAS-modified SiO2 nanoparticles on glass slide produced coatings with water contact angle as high as 162.8° and sliding angle as low as 4°. It can also be seen that for glass substrates, the hydrophobicity increased with an increase in percentage of FAS-modified SiO2 nanoparticles. Although the highest percentage transmittance was about 30%, texts and pictures beneath the coated glass slides were clearly readable. The cotton substrates also exhibited excellent hydrophobicity, with a water contact angle of 150° and sliding angle of 22°. Furthermore, the substrates showed good retention of colour and durability after simulated washing and 72 hours of ultraviolet (UV) weathering chamber test. These results show that the effects of washing and UV on the important properties of the cloth were insignificant.