全國中小學科展

動物學

氣象因子對灰面鵟鷹過境遷徙之影響

本研究主要分析氣象因子對於灰面鵟鷹春季過境八卦山區之影響。分析1994年至2004年灰面鵟鷹遷徙資料發現彰化八卦山區之微氣象與灰面鵟鷹族群遷徙波動性具有顯著的相關性,其中以日平均氣壓、日平均相對濕度、日平均風速及日平均風向等氣象因子分別對起鷹、落鷹之族群數影響最為明顯。而其遷徙週期之動態變化,明顯地集中於約16日內完成主要族群之遷移。不論是同一年度內之高峰期變化,或是高峰期與日期契合之相關性,顯示氣象因子為其遷徙影響的重要因子。然而,從各年度間的遷徙高峰期間的相關性分析結果得知,目前11年過境調查紀錄,應該無明顯的規律性動態變化模式,考量其他對於遷徙過程可能具有影響的因子,應有其他的環境或生物因素影響遷徙期間族群的波動性及週期性。對於建立其遷徙模式而言,可能需要更多且更詳盡的遷徙紀錄,以及配合遷徙過程的各過境點的氣象或其他因素合併分析,方能獲得更為明確的結果。The main purpose of this study is to find the effects of the meteorological factors on the dynamics of the migrating population observed at the Pakuashan area in spring for the gray faced buzzard. The migrating population dynamics observed at the Pakuashan area correlated significantly with the local meteorological factors noted from 1994 to 2004. The daily average atmospheric pressure, average relative humidity, average wind speed and wind direction had significant impact on the soaring and landing populations of the gray faced buzzard. Obviously the annual migrating dynamics observed at the study site was accomplished within 16 days. In addition, the similar variation pattern of the peak migrating populations in the same year as well as the consistency of the date of the peak population observed annually supports the hypothesis that the local meteorological factors have a great impact on the migrating behavior of the populations. However, the correlation analysis of the peak migrating populations among years indicated that little cyclic migrating pattern was found in the past 11 years’ observation records. Other biotic or abiotic factors might have influence on the periodicity and fluctuation of the migrating populations. In order to establish a precise population model to describe the migrating behavior of the gray faced buzzard, detailed records of the migration process and the analyses of the relationships among the meteorological data as well as other factors and the bird populations observed should be gathered and performed.

海鱺血清濃度對海鱺鰭細胞成長的影響

本文以動物細胞培養方法探討培養基中添加海鱺血清(CS)來培養海鱺鰭細胞株(CF-2)的可行性。發現CF-2單層細胞培養在L15-10/0 (L15 添加10% FBS)、L15-5/5 (L15添加5%FBS及5%CS)、L15-2.5/7.5、L15-0/0、L15-0/1.25、L15-0/2.5、L15-0/5、L15-0/10及L15-0/20等培養基6天後,其細胞數分別為最初的4.16、10.8、12、0.97、4.9、5.64、8.14、11.36及9.72倍。細胞接種於L15-0/0、L15-0/1、L15-0/2、L15-0/4、L15-0/8及L15-0/16等培養基24小時後,其附著率則分別為23.1%、96.9%、94.8%、93%、84.5%及39.5%。 CF-2繼代後直接培養在28℃,L15-0/2培養基中,細胞附著及成長良好,5-6天後再以1對2進行繼代。目前已在L15-0/2培養基中培養12代以上,命名為CF-2cs。在1%-16%海鱺血清濃度下,其增殖能力隨濃度增加而增加。培養在pH 7.6、pH 7.3、 pH7.0及pH 6. 7 的L15-0/2培養基中發現pH7.0為其生長最適酸鹼度。CF-2cs對嘉蠟魚虹彩病毒(RSIV),文蛤呼腸病毒(HCRV)及淋巴囊腫瘤病毒(LCDV)等三種魚類病毒具有感受性。以90%L15-0/2及10%DMSO超低溫冷凍保存CF-2cs,解凍後細胞附著及生長良好並在2-3天後長成單層。此外,L15-0/2也可直接用來培養RGB及RSS兩種源自於玳瑁石斑及銀紋笛鯛的初代細胞。這些結果顯示海鱺血清可完全取代胎牛血清來培養魚類細胞。

A study to find out suitable colour to control pests of chilli plants using a colour trap

Chilli (Capsicum annuum L.) is one of the most important condiment crops in Sri Lanka. The main constrain in chilli cultivation is the Leaf Curl Complex (LCC) which reduces the quality of the pods as well as the yield. Many researches have been proven that the problem can be controlled by Integrated Pest Management (IPM) practices. Colour sticky trap is one of the mechanical methods in the IPM package which reduces the pest population successfully. Mainly three colours, namely blue, yellow and white have been identified as suitable colours for traps all over the world. This study was thus, conducted to find out the most effective colour for sticky traps to control chilli leaf curl complex in the Intermediate Zone of Sri Lanka. Traps were prepared from wooden plates of 30 x 25cm in size and the colours were applied in both sides of the plate. Both colourless and odorless vaseline was used as the sticky substance. These blue, yellow and white sticky wooden plates (traps) were fixed in 1m height from the ground level and they were used as the treatments. Six pots with 2 plants each of the variety ‘KA-2’ were used in a treatment and three replicates were sited for the experiment. All the agronomic practices were equally done for all the treatments. Number of trapped pests associated with the LCC was counted in 4, 6, 9 and 12 weeks after transplanting. The number of leaves affected by the pests in a canopy was counted in 7, 10 and 12 weeks after transplanting. The number of damaged green pods and the pod weight were taken at harvesting. The mean values of the number of pests trapped in white, yellow and blue colour traps were 162, 160 and 38 respectively. The percentages of damaged leaves in a canopy at 7, 10 and 12 weeks after transplanting in the blue trap were 89.07, 98.00 and 100.00 respectively. Those values in the white trap were 87.37, 98.90 and 93.29 and in the yellow trap were 69.03, 87.26 and 82.26. Percentages of damaged green pod weight in the blue, yellow and white treatments were 66.63, 47.06 and 45.65 respectively. These results suggest that yellow and white colours are more effective in sticky traps in pest controlling to control chilli leaf curl complex in the Intermediate Zone of Sri Lanka. Further studies are required to confirm the results.

Applied Red Palm Weevil Farming

The Red Palm Weevil is a kind of pest commonly found in all coconut and palm growing areas, causing considerable damage to palm trees. The pest at larva stage was found to be a popular food dish for both local people and visitors and has been commercially bred for consumption. This project aimed to develop a farming method to increase the quantity of red palm weevil larvae for commercial use, instead of the natural farming which fed the insects on rare natural materials. Firstly, the most appropriate food formula to boost the multiplication of red palm weevil using local raw materials was determined. Four food formula were developed: 1.combination of palm leaves, coconut fibers, and pig food, 2.palm leaves, coconut fibers, and rice bran,3. palm leaves, coconut fibers and cassava,4. a combination of crushed palm leaves and coconut fibers. The mixture ration were 1:1:1 for formula1-3 and 1:1 for formula 4. Equal number of the adult weevils were raised in the different food formula, the length and weight of the larvae obtained were measured every week for seven weeks. The gross weights and the effectiveness of the red palm weevil farming were analyzed using the feed conversion ratio (fcr), the daily growth rate, and the percentage increase in weight. It was found that. the weevils raised with food formula 1 yielded the larvae which grew the fastest with highest effectiveness. The most appropriate ratio of the food mix which yielded the satisfactory larvae size was determined to be 1:1:1 3.Next, experiment was carried out to improve the quality of the insect larvae for consumption. The larvae produced had some distinct smell which some consumers do not like.To improve the smell, the larvae were fed with the selected food mix added with minced fresh Pandanus leaves 2 days prior to consumption. Food mix with coconut fibers instead of Pandanus were used as control. Consumers were most satisfied with the larvae fed with added Pandanus leaves. Analysis of the food mix, larvae and Pandanus leaves found the common compound, Coumarins. In conclusion, our project found a suitable system of red palm weevil farming an alternative to conventional method which farmed the pest on cut palm trees. The new method resulted in the best yield of insect larvae with the highest consumer satisfaction and reduce destroying natural resource.

因地制宜的生存之道─日本與臺灣兩地端黑豹斑蝶適應策略之探討

端黑豹斑蝶廣泛分布全球,包括臺灣和日本兩地。在日本,端黑豹斑蝶的分布有逐漸北移的現象,這可能是全球暖化的影響。北移的現象暗示端黑豹斑蝶可能對溫度變化具有敏感的反應。臺灣及日本的氣候類型不同,故推測端黑豹斑蝶在兩地可能發展出不同的適應策略,以成功生存。藉著計算發育零點及有效積溫、比較不同溫度對成蟲體型的影響,了解兩地族群是否發展出不同的適應策略。臺灣族群發育零點為12.95℃,日本族群為6.59℃,日本族群可在較低溫度下開始發育;兩族群完成生活史所需的天數和有效積溫不同;溫度會影響成蟲體型。相同溫度下,日本族群生長較快,體型較小。不同食草亦有可能影響發育。兩地族群顯示出不同生活史,日本族群演化出適應低溫的生存策略。端黑豹斑蝶可能藉由北移的方式,來解決全球暖化帶來的影響。

The unknown gene interacts with dll , abdA,Ubx

We operated the misexpression screen between the EP lines and the pattern lines with the genotypes of eq1>dll, eq1>abdA, eq1>Ubx, eq1-GAL4, ey-GAL4 or dpp-GAL4. After the screening, we found that five of these 1,800 strains of filial generation had special phenotypes. It had shorter antennae and defects in the anterior equatorial region of eyes. We used plasmid rescue and IPCR to sequence the certain target gene, and found that it was escargot, abbreviated as esg. To identify when, where and how the overexpression of escargot induces such phenotype, we operated the staining of eye-antenna disc in third-instar larval period of wild type, eq> esg×UAS-GFP and eq>GFP with anti-dll, anti-caspase3 and anti-esg. The result shows that escargot cannot be detected before puparium formation. But the expression of dll, a gene controls the eye development, was reduced in the eye disc. We except the overexpression cause the defect of distal antennae and the anterior equatorial region of eyes mainly in the 3-day-long pupal life.我們用異位表現法篩選出和eq1>dll、eq1>abdA、eq1>Ubx、eq1-GAL4、ey-GAL4或dpp-GAL4 這些pattern lines有交互作用的EP lines。在這1800種的果蠅子代品系中,有五種具有特殊的性 狀。它們具有觸角短化以及複眼前緣中央區有缺刻的現象(形成心型眼)。我們使用質體救援 法以及IPCR的方法來定序這段未知基因序列,發現這是一個叫做escargot的基因(簡稱esg)。 為了了解過分表現此基因會造成何種分子影響,以至於產生此種性狀,因此我們使用 anti-dll 、anti-caspase3 和anti-esg 進行野生型、eq>esg×UAS-GFP 和eq>GFP 三齡幼蟲的 eye-antenna disc的螢光免疫染色。結果在幼蟲成蛹前都沒有偵測到esg的表現現象;不過在eye disc中,控制眼睛發育的基因dll的表現有被抑制的現象。因此我們推測過分表現esg的過程因 該是發生在為其短短三天的蛹期。也就是說,這種表型應該是在化蛹後形成。

蟑螂心世界-利用心電圖與影像分析法探討昆蟲心臟因應體位變化的調節作用

本研究以心電圖(Electrocardiogram, ECG)與心臟影像分析(Image analysis)法,探討美洲蟑螂與短角外斑腿蝗的體位改變對其心臟生理活動的影響。當美洲蟑螂頭朝上立起時,血淋巴受重力影響而往身體尾端移動,此時心跳率增加,進而維持心輸出量。頭朝下立起時,血淋巴受重力影響而更易流向頭部,此時心搏量減少,進而減少心輸出量,以維持血淋巴循環的恆定。我們亦發現相對於心電圖記錄,影像分析法可收集較多參數,亦不傷害蟲體。總結前人文獻與本研究發現:人體(閉鎖式循環系統)主要透過動脈收縮以調節血壓,美洲蟑螂(開放式循環系統)主要改變心搏活動以維持血淋巴循環的恆定。

蟲以食為天一線蟲覓食與攝食行為之探討

秀麗隱桿線蟲(Caenorhabditis elegans)為在科學界備受矚目的模式生物,對於其生殖及發育過程已有諸多研究,然而對於其覓食及攝食行為的相關研究卻仍闕如;每一種生物都有其獨特的行為模式,而為了解線蟲發展出何種覓食與攝食的行為以適應自然的環境,因此著手進行研究。本研究歸納出線蟲的七種一般行為:前進、探頭、偏移、擺頭、後退、轉向及拐彎行為,並探討其意義。其中,前進及探頭行為為恆常出現。偏移與轉向行為與攝食有關,在有菌環境中出現,可避免其遠離食物來源,而連續的後退及轉向行為也構成特殊行為之樹枝狀行為,推測應為幫助線蟲的消化所出現的行為。擺頭與拐彎行為與覓食有關,在無菌環境中出現。後退行為雖在有無菌環境中皆出現,但由後退後行為的不同可以了解後退行為在兩種環境下具有不同意義。在有菌環境中,後退後通常伴隨轉向行為;在無菌環境中,後退後通常伴隨拐彎行為,為逃離不適環境且藉以覓食的行為。經過研究,發現線蟲的覓食機制為嗅覺,且對嗅覺有依賴性及專一性,在其他氣味存在的環境下會大大降低覓食的效率,但最後仍然能正確地找到食物來源。線蟲於覓食的過程中所出現的特殊行為之混亂行為,由實驗結果發現為是E. coli 所釋放至培養基的化學物質所造成,化學物質濃度越濃,線蟲所表現出的混亂行為就越明顯。推測此種現象發生的原因,應為E. coli 釋放化學物質以干擾線蟲,以避免本身受到捕食,然而,線蟲也演化出適應的能力,因此在發生混亂行為後仍然能抵達菌落,此種特殊的交互作用表現出線蟲與E. coli 間的共演化現象。Cenorhabditis elegans has long been a model organism used for developmental biology studies. However, researches about its foraging and feeding behaviors are still limited. Every organism has its unique behaviors, and this research was conducted in order to understand more on what kind of foraging and feeding behaviors were developed by C. elegans and how they helped C. elegans to adapt to the environment in which it lives. The research concluded with seven general behaviors of C. elegans : advancing, probing, slanting, swaying, backing, turning and bending, and the meanings of it. The advancing and probing behaviors are constant. The slanting and turning behaviors, which appear in presence of food, are feeding-associated behaviors, which help C. elegans avoid leaving the food source. Continuous backing and turning behaviors also make up the branching behavior, one of the special behaviors, which help C. elegans’ digestion. Swaying and bending behaviors, which appear in absence of food, are foraging-associated behaviors. Although backing behavior appear both in presence and absence of food, the difference in post-backing behaviors show that there are distinct meanings of backing behavior in each environment. In presence of food, turning after backing is usually observed; in absence of food, bending after backing is usually observed, which indicates the act of escaping from unsuitable environment and searching for food. Studies show that the foraging mechanism of C. elegans is by olfaction, and C. elegans is highly olfaction-dependent and specific: efficiency of foraging decreases significantly under environment with scents other than that of E. coli, but C. elegans is still able to locate the food. According the experiments, the chaos behavior, one of the special behaviors, appears during the foraging process of C. elegans, and is caused by chemicals released to the medium by E. coli. The density of the chemicals and the extent of chaos behavior is in direct proportion. The theory is E. coli secrets chemicals to disturb the worm to avoid being preyed upon. C. elegans, however, also evolved the ability to adapt to the chemical so that it can still reaches the food source even after chaos behavior appeared. This unique interaction is a manifestation of co-evolution between C. elegans and E. coli.

紫蝶幻影

The main purpose of this experiment is to discuss the characteristics of iridescent colors of Taiwanese Euploea’s wings, inclusive of the relations between the colors of wings and squamas. According to the results from scanning electron microscope, we discovered that the iridescent colors had a close relation to nanostructure and arrangements of squamas. We inferred that both the nanostructure and the arrangements would influence the formation of iridescent colors and the basic colors on wings. In addition, the basic colors on wings are related to different types of scales. To compare with the diverse formations of different sorts of Taiwanese Euploea’s wings, we took SEM pictures of Elymnias hypermnestra as well, discovering that its iridescent colors had similar relation with scales. And there was the regulation that Elymnias hypermnestra had only one type of scales at iridescent area, and two different scales at not-iridescent area as well as Euploea’s. 本實驗目的為探討台灣地區紫斑蝶蝴蝶翅膀幻色的特性,以及翅膀幻色與鱗片的相關性。由結果得知,幻色實驗中利用掃描式電子顯微鏡發現紫斑蝶幻色的形成和其鱗片的細微結構與排列方式有密切相關。我們推論紫斑蝶的鱗片細微結構與排列皆會影響其幻色的形成,而顏色的不同則與不同類型的鱗片相關。除此之外,我們亦對同具幻色的紫蛇目碟進行拍照分析,發現其幻色亦與鱗片有相關性。紫蛇目蝶的幻色區具有單一種鱗片構成的規則性,非幻色區則有兩種鱗片,與紫斑蝶相同。

New Evidences of Behavioral Mechanism for Discrimination and Orientation of the Orb-web Spider, Nepi

由於結網性蜘蛛視覺不靈敏,如何在網上藉振動進行獵捕,這是長久以來頗令科學家困惑的難題,當周遭環境各種振源觸網時,首先會產生不同振盪,蜘蛛是否藉由這些振盪得知獵物資訊?如何迅速準確的定位?又有那些決策條件影響蜘蛛的捕獵行為?更特別的,為何蜘蛛在捕獵過程中會“扯網”?本研究以台灣最大型結網性蜘蛛-人面蜘蛛為研究對象,並設計出一套非接觸式的測量方法,就上述謎題作深入的探討後,成功的解開人面蜘蛛的捕獵機制。簡單來說,其機制分為兩大系統:(1)當獵物擾動不明顯,人面蜘蛛會立即扯網,藉有無產生阻尼振盪,以判斷有無獵物存在;在阻尼振盪產生時,蜘蛛將感知其中具有最大阻尼振盪之放射絲為獵物所在方向,而振盪週期長短,係蜘蛛用以判斷獵物遠近之有效因素。(2)當振源明顯時,蜘蛛直接判斷各種擾動的振幅大小、頻率高低、波形模式、振源質量輕重,決定是否啟動捕獵或逃離反應,並在反應前先行定位,亦即以步足腳勾偵測並比較各放射絲之振盪大小,以振盪最大之放射絲為獵物方向,其次藉由第二對步足之位移所產生之準光角,判斷獵物之遠近。蜘蛛正確的將獵物定位後,會以適當的速度往前衝,一口咬住獵物,以蛛絲重重包裹後,拖往網中央並進行吸食。 Giant wood spider, Nephila pilipes, is the biggest orb web spider in Taiwan. The mature N. pilipes may even grow to exceed 5 cm body length. While waiting for the prey, its giant body hangs quietly on the hub of the web. Owing to its ineffective vision and sense of smell, the spider depends almost on detecting the vibration signal of the struggling of web cause by the struggling prey. When various kinds of sources from the environment contact the web, they will generate various types of vibrations which cause the spider to judge whether they represent danger, prey, or irrelevant signals. Our results suggest that if the disturbance is obvious, through discriminating the amplitude and frequency of the vibration, the spider will make a decision whether to attack or escape immediately. Yet, before any decision is made, it will need to locate the source of vibration. For example, it will locate prey correctly by comparing the vibration transmitted from the radiating strings. The radiating strings that transmitted the largest vibration are where the prey is entangled. The displacement of the second pair of legs will generate a quasi visual angle which enables it to comprehend the distance of prey. When the vibration signal is obscure, it will jerk the radiating string immediately. After jerking it, if there is damping oscillation on the web, then the spider can judge the location of the prey. When there is damping oscillation, the radiating string that transmitted the greatest damping oscillation is where the prey is entangled. Furthermore, the frequency of damping oscillation helps the spider to judge the distance of the prey. After locating the prey correctly, N. pilipes approaches the prey fast, wraps it with silk then drags the prey to the hub to feed.\r