全國中小學科展

動物學

利用粒線體UQCRC1基因缺失之巴金森氏症果蠅模式探討細胞自噬作用對於神經系統退化之影響

巴金森氏症是最常見的神經退化性疾病之一,目前尚無根治之法。研究已知,粒線體如果出現問題,會加速神經細胞退化。細胞自噬作用可協助清除功能不佳的粒線體,以維持神經細胞運作。電子傳遞鏈第三複合體核心中的UQCRC1 (Ubiquinol-Cytochrome C Reductase Core Protein 1) 基因點突變會導致巴金森氏症。然而,細胞自噬作用對於UQCRC1引起神經退化影響的仍不清楚。本研究中,在果蠅神經系統以RNA干擾方式降低UQCRC1表現量,建立巴金森氏症模式;而後利用不同藥物分別抑制或促進細胞自噬作用,觀察果蠅爬行能力;同時,利用MARCM遺傳工具,使果蠅組織細胞分為UQCRC1缺失和正常細胞兩群,觀察細胞自噬相關的蛋白表現量在兩群細胞間的差異。研究結果顯示細胞自噬對UQCRC1參與的粒線體功能缺損的神經退化有代償作用。

探討社會孤立對美洲蟑螂之行為與生理反應的效應

本研究建立美洲蟑螂的社會孤立動物模式,藉由隔絕費洛蒙的交流,探討對昆蟲行為與生理的效應。社會孤立的美洲蟑螂,具有較高的死亡率,並改變以下的行為反應:減少蟑螂的探索行為,使蟑螂運動的時間與距離降低,並增加對能產生較高能量之食物的需求。社會孤立可改變以下的生理反應:個體代謝過程的呼吸商降低,以脂質代謝作為能量來源;脂肪體觸酶活性下降;包囊作用的免疫反應下降。本研究發現,即使是非社會性昆蟲的蟑螂,社會孤立亦會造成生存上的負面影響,而引發隔離症候群(isolation syndrome)。

果蠅緯度相關晝夜節律特徵:穩定性、活動量分佈與演化意義 Latitude-Dependent Circadian Traits in Drosophila: Stability, Activity Peaks, and Evolutionary Implications

生物時鐘可對生物體的行為與生理造成影響,在探討晝夜節律特徵的差異時,過去研究常侷限於北美大陸的品系,缺少赤道及南半球品系的晝夜節律特徵探討。有鑒於黑腹果蠅在全球各大洲的廣泛分佈,因此我們以黑腹果蠅(近赤道與中高緯度品系)為材料,研究果蠅是否因緯度而有相異的晝夜節律特徵?結果顯示不同緯度的果蠅品系展現出相異的晝夜節律特徵。赤報品系在全暗狀態下仍維持原本光暗12小時的穩定節律,而南北半球的中高緯度品系則具有相似節律特徵,即在全暗狀態下的節律不對齊原本正常光源的穩定節律,其他如活動量、週期、及節律強度等皆有著品系間的差異。更進一步比對實驗中各個品系基因序列,研究發現per和tim在調控區段有許多SNP變異,顯示其與晝夜節律特徵的關係,有助於後續尋找更多造成晝夜節律特徵差異的可能遺傳變異並探討。

探討在秀麗隱桿線蟲中IFE-1經由sRNA路徑對於精子生成機制的影響

sRNA在各種物種的精子功能中起著至關重要的作用。在秀麗隱桿線中,當缺少精子相關的sRNA「ALG-3/4 26G sRNA」會導致其在25度時不孕。此外,IFE-1是人類真核轉譯起始因子EIF4E的直系同源基因,主要表達於雄性生殖細胞系統中。在先前研究中我們觀察到當「真核轉譯起始因子IFE-1有缺陷」或「精子缺少相關sRNA」時,亦會導致精子具有缺陷。由於三者的相似性,我們認為IFE-1和26G sRNA的生成路徑有關。因此我們假設IFE-1參與協助酵素NYN-3辨認並切割msd-1 mRNA模板後促進26G sRNA生成。我們使用Western Blot、IP、螢光顯微鏡等方法,探討了IFE-1和MSD-1::GFP的關係,發現在ife-1正常的情況下,高溫對於MSD-1::GFP的表現量沒有影響。並且因該蛋白只表現在公蟲精子,我們可以推論msd-1:gfp 只作用於公蟲精子。而此疑似可正向調控基因表現的26G sRNA,有望發展成有別於過往sRNA藥物抑制基因表現的一種新基因治療方法。

探討在秀麗隱桿線蟲中IFE-1經由sRNA路徑對於精子生成機制的影響

sRNA在各種物種的精子功能中起著至關重要的作用。在秀麗隱桿線中,當缺少精子相關的sRNA「ALG-3/4 26G sRNA」會導致其在25度時不孕。此外,IFE-1是人類真核轉譯起始因子EIF4E的直系同源基因,主要表達於雄性生殖細胞系統中。在先前研究中我們觀察到當「真核轉譯起始因子IFE-1有缺陷」或「精子缺少相關sRNA」時,亦會導致精子具有缺陷。由於三者的相似性,我們認為IFE-1和26G sRNA的生成路徑有關。因此我們假設IFE-1參與協助酵素NYN-3辨認並切割msd-1 mRNA模板後促進26G sRNA生成。我們使用Western Blot、IP、螢光顯微鏡等方法,探討了IFE-1和MSD-1::GFP的關係,發現在ife-1正常的情況下,高溫對於MSD-1::GFP的表現量沒有影響。並且因該蛋白只表現在公蟲精子,我們可以推論msd-1:gfp 只作用於公蟲精子。而此疑似可正向調控基因表現的26G sRNA,有望發展成有別於過往sRNA藥物抑制基因表現的一種新基因治療方法。

BeeMind AI: Development of an AI-Based System to Assess Honeybee Health, Behavior, and Nutrient Effects on Learning and Memory

Due to their pollination services, honeybees are one of the most ecologically vital animals, being singlehandedly responsible for nearly 80% of global agricultural pollination [1]. However, in recent years, they have experienced large declines in populations, and as a survey reported roughly 50% of beekeepers in the US lost their honeybee colonies [2]. These losses are experienced globally due to a combination of many factors, including but not limited to habitat loss, pesticides, climate change, and other invasive species [3, 4]. One of the biggest factors attributed to the decline of honeybee colonies is the usage of pesticides, specifically neonicotinoids [3-6]. Neonicotinoid compounds have been used globally since their introduction in the early 1990s [4]. Studies have shown that neonicotinoids can have both sublethal and lethal effects on honeybees, depending on the dosages that they are exposed to, as neonicotinoids bind to nervous system receptors of honeybees [7]. These effects can range from behavior changes to altered motor functions [7-9]. Among the reported effects, one of the more significant ones is the effect of neonicotinoids on honeybee learning and memory [10, 11]. Additionally, there is a lack of availability for methods of monitoring of honeybee hives, essentially meaning that the only methods to track honeybee health are through obtrusive physical methods of inspection. This paper aims to develop a novel AI-based honeybee health assessment system, able to monitor beehives using the following functions: continuous temperature and humidity monitoring both inside and outside the hive, as well as video and audio recording to assess honeybee health as well as population. In addition, this system can be used for honeybee-related studies such as nutrition effects and evaluation on health, learning, and memory. To do this, four types of nutrition have been studied and their effects have been analyzed by a deep learning approach.

短期睡眠剝奪對小鼠免疫系統的影響

現代社會中,睡眠剝奪已成為普遍問題,人們對其對免疫系統及整體健康的負面影響愈加關注。本研究使用特製的旋轉鼠籠讓小鼠連續72小時保持清醒,探討急性睡眠剝奪對小鼠免疫反應的影響。研究發現NK細胞與脾臟中的記憶CD8 T細胞比例明顯減少,顯示細胞毒性功能受損或記憶免疫反應下降。與此同時,抗炎細胞因子的表達增加,而促炎細胞因子和相關基因的表達則有顯著下調。此外,雖然觀察到B細胞比例有所增加,這可能是免疫系統在細胞免疫功能受損時,維持免疫穩態的反應。這些發現揭示了睡眠剝奪可能抑制免疫系統造成損害。本研究強調適量睡眠對維持免疫平衡的重要性,並指出睡眠不足可能促進慢性免疫問題的發展。在此基礎上,後續研究可探討短期睡眠剝奪與腫瘤及免疫系統的關聯,並延伸至長期剝奪的影響。

探討年齡影響急性腎損傷的潛在機制

在現代社會高齡化的趨勢下,老化與衰弱成為引人注目的社會問題,近期也被認為是造成死亡的主要原因。本研究探討了不同年齡小鼠腎臟功能及分子機制的變化。結果顯示,老化小鼠腎絲球過濾率較差,腎損傷指標NGAL和KIM-1增加,顯示老化影響腎功能。此外,老化小鼠的抗氧化能力下降,CHOP蛋白顯著上升,顯示內質網壓力增加。急性腎損傷實驗進一步發現,老化小鼠的腎功能下降及組織損傷較年輕小鼠嚴重,且脂質代謝及粒線體生合成指標呈下降趨勢。這些變化是否由於適應性未折疊蛋白XBP1表現下降造成,仍須更進一步研究釐清。總結,本研究探討年輕與老化小鼠腎臟之分子機轉差異,有助於深入了解老化對腎臟功能的影響和造成急性腎損傷與衰弱症之關鍵因素。

大生熊蟲自體螢光於檢測蔬菜硝酸鹽之應用與螢光機制探討 Application and Mechanism of Tardigrade Macobiotus Autofluorescence in the Detection of Vegetable Nitrates

利用鏡檢大生熊蟲形態檢測蔬菜中硝酸鹽壓力,常有形態判別問題,本研究想利用其自體螢光開發新型檢測模式,利用硝酸鹽壓力下其活動與隱生比例差異與自體螢光強度關係,檢測硝酸鹽濃度。顯示其自體螢光最佳激發波長為488 nm,製作檢量線(R2=0.99)與自製裝置使用470nm波長激發以壓克力濾光(R2=0.97)可檢測0〜156 mg/L硝酸鹽,可改善鏡檢缺點,並嘗試應用,發現蔬菜硝酸鹽 (小白菜492mg/L),超出其自體螢光檢測極限,且蔬菜萃取液會影響大生熊蟲自體螢光,目前能進行定性分析,後續將分析蔬菜中造成干擾物質,繼續評估其應用性。探討其螢光機制,利用組織切片,探討大生熊蟲自體螢光強度與表皮層厚度在隱生和活動狀態下,是否具有相關性,發現脫水樣本自體螢光強度與螢光面積較活動樣本無差異(p>0.05),推測自體螢光強度會受到其隱生時體表收縮程度有關。

短期睡眠剝奪對小鼠免疫系統的影響

現代社會中,睡眠剝奪已成為普遍問題,人們對其對免疫系統及整體健康的負面影響愈加關注。本研究使用特製的旋轉鼠籠讓小鼠連續72小時保持清醒,探討急性睡眠剝奪對小鼠免疫反應的影響。研究發現NK細胞與脾臟中的記憶CD8 T細胞比例明顯減少,顯示細胞毒性功能受損或記憶免疫反應下降。與此同時,抗炎細胞因子的表達增加,而促炎細胞因子和相關基因的表達則有顯著下調。此外,雖然觀察到B細胞比例有所增加,這可能是免疫系統在細胞免疫功能受損時,維持免疫穩態的反應。這些發現揭示了睡眠剝奪可能抑制免疫系統造成損害。本研究強調適量睡眠對維持免疫平衡的重要性,並指出睡眠不足可能促進慢性免疫問題的發展。在此基礎上,後續研究可探討短期睡眠剝奪與腫瘤及免疫系統的關聯,並延伸至長期剝奪的影響。