死亡巧克力—切切割割好計謀
三角形的邊上取任意多個點,我們可以把這塊大三角形沿著切割線切割成較小塊的三角形,但切割線必須是點(或頂點)和點的連線,而且必須切割三角形,同時可以切任意大小的三角形,如圖(1)與圖(2)。但不可以一開始就取走整個三角形。定義拿到最後一塊三角形的人獲勝,而在多邊型中的玩法與在三角形中相同。 我們分A、B、C三種規則來討論,其中A規則即是上面提到的玩法,B規則大部分的玩法和A規則都相同,唯一不同的地方在於:A規則中,只要有一方取到剩下的圖形為三角形,另一方就可以直接取走剩下的三角形,而B規則規定即使剩下的圖形已經是三角形,也必須取到剩下的圖形邊上都沒有分點為止。C規則是限制玩家一次所能取的三角形數來進行遊戲。 我們完成了A、B、C規則中三角形與多邊形的必勝策略,並找出必勝策略之間的關聯。 ;Given any numbers of points on the sides of a triangle, the players can cut this triangle into pieces. Each cutting line has to be one, linked between two points given from two different sides. And the player can’t have to cut smaller triangles out of the original triangle. The out-cut triangles can be chosen randomly without any restriction in size, just like what’s shown in picture(1)and(2). Meanwhile the first player can’t cut the original triangle exactly all out in the very beginning process. We define the player as the winner, who gets the last triangle. And the above way we play can be applies to any multi-side shapes. We discussed the question respectively in three rules, A, B, and C. Rule A is what we mention above. Rule B is generally the same as rule A, except for the only difference:The rule A , if there is any triangle left , the next player can get it directly, but while in rule B, the every next player has to cut out smaller triangles until no point is left on sides. Rule C proceeds on conditions that there is a limitation to a certain number of triangles cut out at a time. We has finished the winning tactic respectively in rule A, B, and C in the games with a triangle and multi-side shapes. Furthermore, we find the connection between the winning tactives.
蜘蛛數
We understood the definition and meaning of spider number by reading〝Wonders of Numbers〞. It interested us so much. So, we took further step to study the situation of extreme value when the gap sometimes lie on the line and sometimes on the circle or even on both. That is to say, we explored the relation between spider number and the gap when the spider number is maximum or minimum. New research for the application of spider number involves several directions. First, we design a new game called〝Stepping Land Mine〞with the rule of spider number. Give you a net with several hidden gaps, trying to find the right positions of gaps. Second is the further result for a different type of net about regular n-polygon. Third is a tactic for a net with destroying of the strategy points. In this situation, the gaps amount on the circle and on the line are fixed. At the same time, consider the situation of circles and lines designing the tactic of placing the gaps to attain the maximum of the destructive effect. 在本文中我們定義一個蜘蛛網上的蜘蛛數,若在蜘蛛網中加入缺口後,會影響蜘蛛數的大小。我們探討蜘蛛網上的缺口,該如何分配才能夠得到蜘蛛數的極值(最大值及最小值)。先觀察一直線和圓上缺口如何放置蜘蛛數有極值,再探討許多條直線及圓上的情況,進而推展至許多同心圓及通過圓心的許多條放射線的缺口,該如何放置,蜘蛛數才會有極值發生。
Bezier曲線與蚶線間之關聯性的探討與推廣
在這篇報告中,我們以貝斯曲線的做圖原理建立出一種新的曲線-環狀貝斯曲線,進而得到不少有趣的結果。我們發現有名的古典曲線-蚶線,也是屬於二次環狀貝斯曲線。軌跡方程式為:,此時,係數恰符合二項式定理。之後我們推廣至n次環狀貝斯曲線的軌跡方程式:,也符合二項式定理。
在複數平面上,給定z0、z1、z2三點,我們定義出一個二次變換 ,若,,可映射成蚶線的圖形;若z∈實數,則可映射成拋物線。利用此結果類推我們找到一個複數平面上由 z0、z1、...、zn 所決定的n次變換將以原點為圓心的單位圓,映射成n次環狀Bezier曲線。
In this essay, we use the method of forming a Bezier Curve to establish a new curve, circular Bezier Curve, and find a lot of interesting results. We discover the famous classical curve "limacon", which belongs to the Quadratic Circular Bezier Curve. The locus of Quadratic Circular Bezier Curve is, where. Its coefficients match the binomial theorem. Then we apply it to the locus of nth-circular Bezier Curve:, and it also matches the binomial theorem.On the complex plane, we define a quadratic transformation corresponding to three points—z0,z1 and z2 as .If , where , a limacon is mapped. If z is a real number, a parabola is mapped. With this result, we will find a nth transformation defined by z0、z1、...、zn on the complex plane. It will form a nth-circular Bezier Curve with unit circle centering on the origin.
會變色的金屬—神奇的奈米科技
本報告研究內容,是利用電化學氧化還原方法合成金、銀、銅三種奈米粒子,以及探討電流是否會影響電解合成奈米粒子,在前半部成功地利用控制電解的部份條件,如界面活性劑、以及電流值大小,而合成出金、銀、銅三種奈米粒子,利用UV-VIS的光譜分析,鑑定其三種奈米粒子不同的吸收波長,其光譜出現吸收的現象是因為金屬表面特殊的表面電漿共振吸收現象而產生的。但是在本實驗中發現在UV-VIS的光譜中,電壓值的大小對金奈米粒子吸收波長並沒有關係,這些奈米粒子在水溶液中藉由界面活性劑的包覆,而溶解的相當好。 The content of thesis focuses on using electrochemistry oxidation-reduction reaction to synthesis gold, silver, and copper nanoparticles. We confer whether current of the electrolysis is an influence for the synthesis of nanoparticles. We succeed in synthesizing nanoparticle by controlling some terms of the electrolysis, like the micelle concentration, and current value. Using UV-VIS spectrum to analyse wavelength of three kinds of nanoparticles. The special phenomenon of absorption spectra is appeared because the surface plasma resonance on the surface of metal. From the UV-Vis spectra, we didn’t find the exact relationship between the potential value and the absorption spectra of gold nanoparticles. Finally, we also obtained good results in spectra observation, which meant that these nanoparticles encapsulated with surfactants were well solved in the solution.
完全圖立方乘積之最小控制
完全圖Kn是指一個圖中有n個點,且任意一個點都跟其它的點有邊相連。兩個圖G和H的卡氏乘積G□H的點集V(G□H)={(g,h)| g∈V(G),h∈V(H)},兩個點(g1,h1)和(g2,h2)有邊相連若且為若g1=g2 且h1~h2,或g1~g2且h1=h2。
三個完全圖Ka、Kb、Kc 的立方乘積是指Ka□Kb□Kc。一個圖G中的一點v所連的其它點稱為這個點v的鄰居,也就是N(v)={x | x~v}。一個點集S中的所有點的鄰居的聯集稱為這個點集的鄰居,也就是N(S)=∪v∈S N(v)。如果一個點集S和它的鄰居N(S)包含了一個圖G的所有的點,也就是S∪N(S)=V(G)稱這個點集S是這個圖G的一個控制集。我們把圖G的所有控制集中點數最少的稱為最小控制集,並定最小控制集的點數為最小控制數γ(G),也就是γ(G)=min { | S |, S是G的控制}。
本文的目的在於研究完全圖立方乘積的最小控制,也就是要給γ(Ka□Kb□Kc)一個上界。特別當 a = b = c = n時,γ(Ka□Kb□Kc) = 。
A complete graph Kn is a graph with n vertices, which any vertex is adjacency to every other vertices. The Cartesian product of two graph G and H which is denoted G□H is define as follow: the vertex set V(G□H)={(g,h)| g∈V(G),h∈V(H)},and two vertices (g1,h1) and (g2,h2) is adjacent if and only if g1=g2 and h1~h2 or g1~g2 and h1=h2. The Cartesian product of three complete graph Ka,Kb,Kc is Ka□Kb□Kc,which is the same with (Ka□Kb)□Kc.
In a graph G, the neighbor of a vertex v N(v) is the set of the vertices adjacent to the vertex v, that is N(v)={x | x~v}。 The neighbor of a vertex set S is N(S), which is the union of the neighbors of vertex v over S, that is N(S)=∪v∈SN(v). For a graph G, if a vertex set S unions its neighbor N(S) equal to the vertex set of G, that is S∪N(S)=V(G), we say that S is a dominating set of G. The domination number of a graph G will be denoted as γ(G), which is the minimum size of all dominating set of G..
We give an upper bound to γ(Ka□Kb□Kc). And when a=b=c, γ(Ka□Kb□Kc) ≦
New Evidences of Behavioral Mechanism for Discrimination and Orientation of the Orb-web Spider, Nepi
由於結網性蜘蛛視覺不靈敏,如何在網上藉振動進行獵捕,這是長久以來頗令科學家困惑的難題,當周遭環境各種振源觸網時,首先會產生不同振盪,蜘蛛是否藉由這些振盪得知獵物資訊?如何迅速準確的定位?又有那些決策條件影響蜘蛛的捕獵行為?更特別的,為何蜘蛛在捕獵過程中會“扯網”?本研究以台灣最大型結網性蜘蛛-人面蜘蛛為研究對象,並設計出一套非接觸式的測量方法,就上述謎題作深入的探討後,成功的解開人面蜘蛛的捕獵機制。簡單來說,其機制分為兩大系統:(1)當獵物擾動不明顯,人面蜘蛛會立即扯網,藉有無產生阻尼振盪,以判斷有無獵物存在;在阻尼振盪產生時,蜘蛛將感知其中具有最大阻尼振盪之放射絲為獵物所在方向,而振盪週期長短,係蜘蛛用以判斷獵物遠近之有效因素。(2)當振源明顯時,蜘蛛直接判斷各種擾動的振幅大小、頻率高低、波形模式、振源質量輕重,決定是否啟動捕獵或逃離反應,並在反應前先行定位,亦即以步足腳勾偵測並比較各放射絲之振盪大小,以振盪最大之放射絲為獵物方向,其次藉由第二對步足之位移所產生之準光角,判斷獵物之遠近。蜘蛛正確的將獵物定位後,會以適當的速度往前衝,一口咬住獵物,以蛛絲重重包裹後,拖往網中央並進行吸食。 Giant wood spider, Nephila pilipes, is the biggest orb web spider in Taiwan. The mature N. pilipes may even grow to exceed 5 cm body length. While waiting for the prey, its giant body hangs quietly on the hub of the web. Owing to its ineffective vision and sense of smell, the spider depends almost on detecting the vibration signal of the struggling of web cause by the struggling prey. When various kinds of sources from the environment contact the web, they will generate various types of vibrations which cause the spider to judge whether they represent danger, prey, or irrelevant signals. Our results suggest that if the disturbance is obvious, through discriminating the amplitude and frequency of the vibration, the spider will make a decision whether to attack or escape immediately. Yet, before any decision is made, it will need to locate the source of vibration. For example, it will locate prey correctly by comparing the vibration transmitted from the radiating strings. The radiating strings that transmitted the largest vibration are where the prey is entangled. The displacement of the second pair of legs will generate a quasi visual angle which enables it to comprehend the distance of prey. When the vibration signal is obscure, it will jerk the radiating string immediately. After jerking it, if there is damping oscillation on the web, then the spider can judge the location of the prey. When there is damping oscillation, the radiating string that transmitted the greatest damping oscillation is where the prey is entangled. Furthermore, the frequency of damping oscillation helps the spider to judge the distance of the prey. After locating the prey correctly, N. pilipes approaches the prey fast, wraps it with silk then drags the prey to the hub to feed.\r
變形的橢圓—從距離及距離和談起
給定一平面E,A為平面上一點。取r>0,則我們知道到其距離為定值的點形成一圓,而A為此圓圓心。如果把A改成一平面圖形,則到其距離為定值的點形成的集合會是什麼樣子?類似地,給定平面上兩焦點F1及F2在平面上,則到其距離和為定值的點形成橢圓。同樣的,若把F1及F2改成平面圖形,其圖形會是什麼樣子?藉著GSP的輔助,到目前為止,我們得到了以下的結果: \r 1. 給定一平面E及此平面上的一個凸多邊形, 我們描繪出在此平面上到此凸多邊形之距離為定值的點所形成的圖形。\r 2. 設F1和F2分別為平面E上之點或線段或多邊形(未必是凸多邊形),我們利用包絡線描繪出所有滿足d(P,F1)+d(P,F2)=k(k夠大)的點所形成的圖形。 \r 3. 設C1,C2為平面E上之兩圓,我們討論所有滿足 d(P,C1)+d(P,C2)=k\r (k夠大)的點形成的圖形並討論其性質。 \r 4. 設L1和L2分別為平面E上之兩線段,我們討論所有滿足d(P,L1)+d(P,L2)=k(k夠大)的點形成的圖形並討論其性質。 \r 5. 設A為平面E上之一點,Γ為平面上一凸多邊形,我們討論所有滿足d(P,A)+D(P,Γ)=k(k夠大)的點形成的集合並討論其特性。 \r 6. 藉由和圓作比較,我們研究了變形圓的光學性質;而對變形橢圓也做類似的討論。\r Let E be a plane and A a fixed point on E. Given , it is known that all of the points on E with distance to 0r>rA form a circle and the point A is called the center of this circle. What is the corresponding graph if we replace the point A with a set (for example,a segament or a polygon) contained in FE? Similarly, what is the case when we modify the two focuses and in the definition of an ellcpse to sets and (or example,two segments or two polygons) contained in 1F2F1F2FE ? Taking advantages of GSP and analytic geomety, we research related situations and so far we have obtained the following results:\r 1. Let Γ?E be a segment, a convex polygon or a circle , etc. and r>0 be fixed. We sketch the graph of points on E with distance r to Γ and study properties of such graphs.\r 2. Let F1 and F2 be singletons, line segments , polygons(may not be convex), or circles,etc., on E Taking advantage of envelopes, we sketch the graph of those points P on E satisfying d(P,F1)=k(K>0 is large enough).\r 3. Let C1 and C2 be circles on 1C2CE. We sketch the graph of the points P on E that satisfiy d(P,C1)6d(P,C2)=k (k>0 is large enough) and study properties of this graph.\r 4. Let L1 and L2 be two line segments on E and be a large enough constant. We sketch the graph of points P on E that satisfy d(P,L1)+d(P,L2)=k(k >0is large enough) and research properties of this graph. 0k>\r 5. Let A?E and be a convex polygon on ΓE. We sketch the graph of points on E that satisfy d(P,L1)+d(P,L2)=k(k>0 is large enough) and research properties of this graph.\r 6.We compare the optical properties of metamorphic circles with circles and we deal with metamorphic ellipses similiarly.
奈米科技材料新發現-氮化鉻
利用陰極電弧蒸鍍各種薄膜,如:類鑽膜(DLC)、氮化鈦膜(TiN)、氮化鉻膜(CrN)、氮化鋁鈦膜(TiAlN)以及先披覆上一層氮化鋁鈦膜(TiAlN)再加上類鑽膜(DLC)的合成膜等。這些薄膜現在已經被廣泛的應用於各種刀具、模具的表面處理之中。本研究主要在探討高速鋼鍍上氮化鉻膜(CrN)之後,對於硬度、磨耗性質的改變,以及觀察氮化鉻膜(CrN)表面結構之組織。 在研究中我們運用陰極電弧蒸鍍系統蒸鍍氮化鉻薄膜,分析上運用SEM來觀察薄膜表面結構組織,以及運用洛氏微硬度機來觀察試片的硬度,另外還有使用磨耗試驗機來進行磨耗測試。以上這些測試總括來說都是在得知性質有無實際上的改變,而這些實際上的改變對於蒸鍍之後的模具或刀具都能夠大幅的提高使用的壽命。 We evaporated different kinds of thin films by using the anode of the electronic arc, such as DLC (Diamond-Like Carbon), TiN (Titanium Nitride), CrN (Chromium Nitride), TiAlN (Titanium Aluminum Nitride), and synthetic films of covering TiAlN and DLC. These thin films have been used widely in processing the surface of a variety of cutters and moulds. The purposes of this research were to investigate changes of hardness and abrasion and to observe the organization of the surface structure of CrN after High-speed steel evaporates CrN. In this study, we use the system of the anode of electronic arc to evaporate CrN. Besides, SEM is used to observe the organization of the surface structure of the thin films and Rockwell Micro-hardness Test Machine is used to investigate hardness of testing samples. Moreover, we use Abrasion Tester to test abrasion. These tests are taken to lead to a better understanding whether the quality really changed. These changes of evaporated moulds or cutters would extend their frequency of using.