會旋轉的電解液
本研究主要探討電解液之帶電離子在磁場中的動力行為。為了觀察更細微的結果,共歷經三代裝置改良,第一代用五個電錶及探針測量徑向橫截面上五點的電壓,所測數值電壓有下降趨勢但不足以呈現細微部份的變化。第二代利用電壓感應線、搭配平移台及電腦,呈現連續性且經數位處理之結果,出現電壓升降的電荷堆積現象。第三代為了更精確,將裝置結構及器材上改良。觀察到在磁場作用下有旋轉現象,改變電極極性時,會有順逆時鐘方向的改變,且只有電解質液才會有旋轉。更可以使用帶電質點受到勞倫茲力F=q(VxB)理論解釋。且旋轉中的電解液比沒有旋轉時,析出的銅量少,反應溫度升高快,電解液內電壓分布因電荷堆積造成的高低起伏。經過改變磁場強度、電解液濃度,不銅價離子電解液,結果濃度大、磁場大、離子數較多者,呈現電壓分布圖快速變化,彎曲大。This thesis report is the study of combining the moving charged particles under the perpendicular magnetic field. By using the theory of moving and electrolysis, the electrolytic liquid will swirl through the particular arrangement of the horizontal cylinders enclosed in a circular enclosure container and strong magnet. Then, the researcher observes the force situation of the charge in the magnetic field and discusses the differences of the electrolysis effect, which is experimented under the different conditions, such as, in the magnetic field or no-magnetic field. Furthermore, the researchers discuss the conduction of voltage spreading and interfering when the moving electrons under different position of two electrodes and under the different interaction of electric field and the magnetic field. And the changing reason as follow: (1)the magnetic field strength. (2)the concentration of the electrolytic liquid. (3)electrolytic solution. When the experiment group compared with the comparison group, the result may provide fundamental understanding as follow:(1) The researchers can find out the charged particles rotating in the magnetic field. And it proved the moving condition when the moving electrons in the magnetic field. (2) This experiment can be used in judging the solution, which I electrolytes, or not. (3) This experiment also proved for Arrhenius’s ionic theory. (4) The researchers found out the quantity of Cuprun decrease, the rise in temperature and the reducing in voltage.
利用電化學合成P型半導體--碘化銅(CuI)光感測器的製作
碘化銅(CuI)為一種P型半導體,在一般文獻中大部分被用做催化劑,合成極為不易。我們利用一簡單電化學合成的方式,可將銅控制在一價銅( Cu?O ),如在有碘離子( I- )的溶液中便形成CuI。在這研究中我們將所合成出之P 型半導體CuI 製成光感測器,在偵測不同光強時有良好的線性關係(r2=0.9961)。在光感測器的實驗中我們利用CuI 電極,讓它接受光照,使其電流產生光電流,如果能儲存其光電流能量,就可成為一太陽能電池,利用其原理,未來可以發展成為替代能源。 CuI is a kind of P type of semiconductor in the general literatures. Most of the CuI is use to catalyst. Except that, CuI is difficult to synthesis. We use a simple way of Electoctrochemistry complex to keep Cu?O under controlling. For example, in the I- solution, Cu becomes CuI. In the study, we make the synthesis P type of semiconductor to be light sensor. In different lightness, the procedure showed good linearity(r2=0.9961) In the light sensor, we use CuI pole to accept sunlight. Then the current will produce light current. If we could store the energy of light current, it will be a solar energy battery. When we apply the theory, it can develop to be substitute energy.\r
模擬複雜系統的演化
複雜系統廣泛地存在每個人生活的周遭,儘管這些系統在表象上有明顯的差異,卻不約而同的都呈現出臨界現象。一個簡單的物理概念卻能廣泛地使用在許多不同的場合當中,這是令人始料未及的。這份報告在尋找,是什麼原因導致這許多似乎與物理沒什麼關聯的系統,都呈現出臨界現象?以及這類系統是如何演化的?臨界現象在系統的演化歷史中,又是扮演怎樣的一個角色?一開始,先介紹臨界現象在實際系統中表現的形式,在這以文字系統作為範例。接下來,進入思考的階段,猜測系統個體間存有的關聯性,提出如何影響的假設,並建立模型。從模型結果,可以了解複雜系統隨時間演化的趨勢改變,並發現臨界現象在系統中扮演的角色以及代表的意義。這份報告有三項結論:1. 臨界現象在複雜系統中呈現的形式 2. 模型結果與實際系統十分相似 3. 臨界現象代表著系統的穩定態。The theory of Scaling Law and Universality was originally used in researching Critical phenomena, and now we find it existing in our normal life. A simple physical concept can be used extensively in different courses. This study try to find out the relation between individuals which causes Critical phenomena appear in such different courses in our normal life, and figure out the effect time brings about. To begin with, we introduce the sights of Scaling Law and Universality by exploring the formation of complicated system. Facing a complicated word system as a real example, we observe an extraordinary phenomena, and find out the Universality and Scaling Law in different kinds of linguistics. In the main part, to think further, what’s the relation between the individuals that leads to Critical phenomena? We will give hypotheses and build a model to simulate complicated system from the view of Universality, trying to find out the cause of the interaction of complicated system. From this model, we could understand: When a complicated system evolves with time, the Critical phenomena will naturally occur in this system that could be considered as dynamic equilibrium. From this study we found out(1) The Universality and Scaling Law in complicated systems, here we use linguistics as an example.(2) Under the hypotheses, the simulation is almost as same as the real result of linguistics system.(3) Time plays an important part in the Critical phenomena which can be found in many different complicated systems, and Critical phenomena symbolize a stable state of such systems.
台灣不同世代A 群鏈球菌對紅徽素抗藥性之研究
A total of 64 nonduplicate isolates of erythromycin-resistant (MIC, >1 μg/ml) Streptococcus pyogenes collected from 1979 to 2003 in Taiwan were evaluated. They were collected from three cohort period: 1979 –1989, 1990-1999 and after 2000. The in vitro activities of 10 antimicrobial agents were determined by the agar dilution method. Penicillin, cephalothin, cefotaxime, vancomycin, and ofloxacin were shown to be active against S. pyogenes isolates (100% sensitive). Erythromycin and azithromycin both had poor activities (MIC50s, 16 and >128 μg/ml, respectively; MIC90s, >512 and >128 μg/ml, respectively). The activities of tetracycline, clindamycin, and chloramphenicol against a significant number of these isolates were also limited. Among the 64 S. pyogenes isolates, 58% had constitutive resistance [cMLS], 40% had an M phenotype and 2% had an iMLS phenotype (inducible resistance [iMLS]). A substantial upsurge in the incidence of M phenotype erythromycin-resistant isolates was found with time for S. pyogenes (10% in 1979–1989, 48% in 1990–1999 and 65% after 2000). The erythromycin resistance genes in 64 isolates of the different cohorts were investigated by PCR. All cMLS phenotype isolates tested had ermB gene. The M phenotype isolates had only the macrolide efflux (mefA) gene. This study shows the secular changes of increasing susceptibility of S. pyogenes isolates to both erythromycin and clindamycin in Taiwan. The mechanisms of erythromycin resistance have changed from the predominance of ermB gene (cMLS) to mefA gene (M phenotype). 本研究是探討台灣自1970 年代末期以來不同世代A群鏈球菌菌株對紅黴素的抗藥性及抗藥基因特徵的演變。研究者收集台灣二十年前(1980 年代前後,第一世代)、十年前(1990 年代,第二世代)、)及最近(2000 年以後,第三世代)之A 群鏈球菌菌株共64 株,利用抗生素圖譜和雙藥錠擴散測試及聚合?連鎖反應(PCR)、和脈衝式膠體電泳研究A 群鏈球菌對紅黴素抗藥性的表現型及基因型特徵。結果發現第一世代的A 群鏈球菌對紅黴素最小抑菌濃度(MIC)值相當高,幾乎都是>512 μg/ml,90%為多重抗藥菌株。第二世代則相對有降低,在第三世代此現象更明顯,多重抗藥菌株為30%。在雙藥錠擴散測試結果,從第一世代來看cMLS 佔大多數(90%),M 型佔10%;第二世代cMLS 及M 型相當分別佔52%及48%;第三世代主要為M 型佔65%,cMLS 佔30%,iMLS 佔5%。利用PCR研究紅黴素抗藥性基因發現所有cMLS 菌株皆有ermB 基因,所有M 型菌株皆有mefA 基因,iMLS 菌株則有ermTR 基因。由本研究顯示在台灣A 群鏈球菌對紅黴素之抗藥性隨著不同世代有逐年改善之趨勢,由MIC50的降低可看出,菌株對紅黴素的敏感性提高,可為臨床治療之參考。
Salinity effects on Duckweed growth
The purpose of this research was to investigate the most favourable salt concentration that promotes growth in the Lemna minor plant. Lemna minor, commonly known as lesser duckweed, is found growing among other aquatic plants or massed together in still or slow moving fresh water, such as ponds and lakes, in warmer regions around the world.
Isolation and Expression of an Eoinephrine-Synfhesizing Enzyme (PNMT) from Entamoeba Parasites
Entamoeba histolytica is a protozoan parasite known to cause infectious colitis and amoebic dysentery in humans. Its life cycle consist of two parts: the infectious cyst stage and the multiplying trophozoite stage. Epinephrine, a neurotransmitter in vertebrates, is released by the trophozoites during the process of cyst formation. The addition of epinephrine to in vitro cultures of amoebas causes them to encyst, and addition of compounds that prevent epinephrine’s activity inhibits encystations. Therefore, epinephrine plays a critical role in encystation in vitro. An understanding of the molecular intricacies of epinephrine-induced encystations may allow for pharmacological manipulation of epinephrine metabolism to control cyst formation in vitro. Drugs that either prevent cyst formation or induce it before a large amoebic population is present would result in the release of fewer cyst forms of the parasite, reducing parasite transmission from person to person. Although trophozoites release epinephrine, it is no known if E.histolytica synthesizes epinephrine or extracts it from the growth medium. Phenylethanolamine N-methyltransferase(PNMT) is the enzyme that catalyzes production of epinephrine norepinephrine. This study aims to determine the source of epinephrine by determining if E.histolytica contains a PNMT-type enzyme. PNMT amino acid sequences from several higher organisms were compared to identify conserved regions of the enzyme. These conserved amino acid sequences were then used to search for similar sequences in a database containing the recently sequenced amoeba genome. A PNMT-like gene was found in the E.histolytica database and cloned in bacteria. Yeast cells containing the cloned E.histolytica PNMT gene expressed PMT enzyme activity. This suggests that E.histolytica produces its own epinephrine, and is the most evolutionarily ancient eukaryote shown to do so. The use of inhibitors against PNMT activity is under investigation.