漩渦之美
我們常可以在自然界中發現漩渦的存在,但其存在的形體與性質也不盡相同,為了研究漩渦的結構與形體,筆者分析出多種會對漩渦產生影響的因素:開始放流的水而高度、放流洞口大小、有無破壞漩渦結構的阻礙、單孔落流漩渦與雙孔落流漩渦、還有流體的黏滯度對漩渦的影響, 但漩渦是一個不斷改變的流體,非常難以觀察,且自然界的漩渦也不是說出現就出現,所以必須設計一個簡易實驗器材來觀察,並用數位攝影機紀錄下來,再慢慢分析,而我們也可以在這個實驗中了解漩渦的結構,和體會到漩渦所表現出自然界的力與美的一面。‧We can always find in nature of different swirl’s forms and properties. To study the swirls, we analyzed such factors, as the beginning water level, the size of the hole, the presence of obstruction that will destroy the structure of swirls, differences between single-hole-swirls and twin-hole-swirls, and the viscosity of fluid. Because swirls change all the time, it is very difficult to observe. We designed a device .The procedure was recorded with a digital video camera and analyzed it. The study helps us understand the structure of swirls and admire the beauty of swirls.
以自製式裝置探討兩成分系活性係數與蒸氣壓及拉午耳定律的偏差
在本次的實驗中,我們藉由拉午耳定律的公式及一條由作者從實驗中推論而得的公式,可以簡單的求出不同溶液的分壓。我們只需要一個自製式的簡易裝置,在裝置底下放置被測量的溶液,並密封使其成為封閉系統,其頂端為一銅箔,在銅箔上使用適合的溶液,藉由上方溶液蒸發量與下方不要放置溶液蒸發量的差異之值比較,即可求出其下方兩種成份系的溶液中各種溶液在不同莫耳分率下的分壓以及能量的傳遞,雖然會有誤差的存在,但比照一般利用光譜法來測量的方式,成本卻降低很多,且經由公式,也可估計各點的活性係數,比之以往簡易很多,因此可當作針對的高中生示範教學及教具,使同學更能了解兩成分係非理想溶液在拉午耳定律中之差別。This study shows that is easy to figure out the partial pressure of the different solutions by applying the formula of the Raoult's laws and a formula computed by the authors from their experiment data. All that is needed is a simple hand-made device. In the experiment, the device was sealed into a closed system after the solution to be measure was placed at the bottom of the device. A proper liquid was put in the top piece of the device, which was made of copper foil. By computing the difference between the amounts of evaporation of the top liquid with and without the bottom solution, we figured out that the two-component solution is the partial pressure and energy transmission of the solutions at varied mole fractions. Though errors do exist, cost was much lower by this method than by the spectrum method. Besides, the formula makes it easier to estimate the activity coefficients at different points. Therefore, the study can be applied in physics teaching in senior high school to facilitate students' understanding of the differences between two-component solutions in the Raoult's laws.