全國中小學科展

臺灣

把自己變不見的「膜」法

本研究以天然材料製作「水溶性包裝袋」為目標,期望改善塑膠袋所造成的環境問題。從腐壞地瓜萃取出澱粉為原料,並將甘油、聚乙烯醇(PVA)、檸檬酸、硬脂酸及水混和以塗佈機於玻璃片上製膜。針對不同比例所製成的水溶膜,透過SEM探究聚合物的交鏈情形;藉由拉力實驗找出膜袋 荷重性最佳的成分比例,澱粉、甘油含量較低者,膜袋荷重表現佳。以熱重分析法探究膜袋之熱穩定性。以FTIR分析成分比例不同的膜之氫鍵,圖譜中可見甘油所造成之變化,同時影響膜的黏滯性。透過微粒動力學將膜溶於水中,施以擾動並觀察微粒粒徑變化情形,攪拌時間越長粒徑越小。最後,將自製膜放於植物盆栽上,觀察植物成長及測量滲透水pH值,確保其對環境友善,以利推廣應用。

銀河系中星團之位置分布及其特性-以自行撰寫之程式進行三維視覺化呈現

本研究以自行撰寫之程式,配合使用開放的天文資料庫,探討銀河系中疏散星團與球狀星團的分布與特性,並將其進行三維視覺化呈現。結果顯示,疏散星團成員星數量較多、年齡較小、鐵氫比較大者較為接近銀河盤面;球狀星團鐵氫比較大的星團多扁平分布在銀心附近;鐵氫比較小的星團則散布在銀暈;疏散星團有較多軌道接近正圓的星團,而球狀星團只有 9 個;兩者離地球較遠的星團普遍體積較大,且在地球相對於銀星的對側皆幾乎沒有數據點。程式所產出的結果已製作成互動式網站,期望能讓使用者更理解本研究的目的,並提升天文學習的直觀性。

不對稱上反角與滑翔機滯空時間之研究

本研究探討滑翔機左右機翼上反角(Dihedral Angle)不對稱設計對滯空時間的影響。傳統認為對稱設計較穩定,但比賽經驗發現,適度不對稱反而能提升飛行表現,引發驗證動機。 依據滾轉力矩(Rolling Moment)原理,規劃11 組上反角組合,結合理論與實驗進行分析,並以標準差檢視數據穩定性與可信度。結果顯示,當上反角差處於適度範圍時,可產生有利滾轉力矩,挑戰了對稱設計的傳統觀念,證實其對飛行穩定與滯空表現的貢獻。 研究成果可應用於無人機及無動力飛行器,提供優化滯空設計的新視角。同時也希望傳達:科學來自生活,只要善用身邊資源,便能設計出具探究價值的實驗,進而激發更多人對科學研究的興趣。

一「鹽」「鉛」金-鉛蓄電池加入各式鹽類的探討

鉛蓄電池電極板會產生不可逆的硫酸鉛使電池效率下降,因此我們利用在鉛蓄電池中加入不同鹽類與不同濃度的硫酸鹽類來解決不可逆的硫酸鉛,並模擬若降低電池充電電壓或是在車中工作溫度進行實驗。經實驗得出硫酸鉀在加入高濃度時較有效果,硫酸鎂與硫酸鋅則以低濃度時較有效果;而三者在低電壓充電時放電的效率都會比較低,且加 入硫酸鎂與硫酸鋅影響較小;三者在高溫環境時充放電的效率會比原本高,當中以硫酸鋅最為明顯。

生菜變色的秘密

蔬果收成後褐變主要由多酚氧化酶(PPO)催化酚類化合物,氧化產生醌,伴隨非酶促反應,聚合成深色色素。本研究主要探討台灣福山萵苣變色的原因及其緩解。首先,本研究觀察到莖和葉柄中的維管束最容易變色。接著,證實了鹼性環境會抑制PPO的活性,而抗氧化劑維生素C和還原型谷胱甘肽可以抑制褐變。研究進一步改良粗萃取的步驟,並以兒茶酚作為反應物,測量產物鄰苯醌的吸光質,量化PPO的活性。此外,也發現變色的細胞並不一定為死亡的細胞,死亡的細胞也不一定會變色。最後,配合組織切片,確認變色細胞較多的是木質部,而死亡細胞較多的是韌皮部。綜上所述,本研究證實萵苣變色的部位PPO活性較高,且可以利用抗氧化劑抑制變色。

探討過氧化氫回收銅的可行性

一般用硝酸溶解銅時會產生有毒氣體(NO、NO2),本研究利用過氧化氫水溶液在適當的酸性條件下溶解銅,具有更環保、更有效率的特性,符合綠色化學的趨勢。研究中採用的酸有醋酸、檸檬酸、酒石酸、硫酸;鹼則有氫氧化鉀、氨水與二乙烯三胺。最後發現以過氧化氫配合硫酸的效果比同濃度的硝酸更好,可以有效的溶解銅金屬。

沙波紋與新月丘—從地球到火星

本研究旨在探究風成沙紋的型態和其移動速度及新月形沙丘的演化過程。利用吹出式風洞建立穩定且單一風向的風場,並運用不同粒徑的石英沙,以研究不同情況下沙紋和沙丘的變化。研究發現,風成沙紋的波長變化不僅受到風速、粒徑等特性的影響,還可能受到波峰後渦流長度的影響。另外觀察沙紋移動速度的變化後,可以明顯的發現與風速有高度正相關,亦討論能量的變化,並試圖建立風速與移動速度的轉換模型。在新月形沙丘演化過程的模擬中,我們歸納出三個主要時期:延伸期、崩落期和消逝期。我們也針對這些結果進行質性分析,透過觀察與討論,進一步了解沙紋與沙丘之變化過程與形成條件。最後我們比較了火星橫向風成脊(TAR)的形狀、動力及分布差異,推論其可能成因,希望進一步探究行星地表形貌的形成和演化過程。

模擬黑洞潮汐破壞事件之演化和分析其逃逸比例與吸積率之探討

在超大質量黑洞周圍,偶爾能觀測到潮汐破壞事件的發生,而這也是一個能夠探測黑洞的手段。潮汐破壞事件是一種特殊的現象,當一個天體進入到所謂的「洛希極限」半徑範圍內時,因為受到的潮汐力超越了自身的重力而遭到撕裂。當這個事件發生時,會因為黑洞在吸積的過程中產生明顯的亮度變化,因此可以透過一系列的亮度變化觀測潮汐破壞事件,並可以推算黑洞的各項參數,因此潮汐破壞事件在天文學的發展上有其重要性。 因此,我們想要嘗試模擬潮汐破壞事件的演化過程。我們學習Linux語言以及如何使用Mcluster和PeTar等模擬軟體,並透過Python分析模擬結果,然後與理論預測值進行比較,以了解我們有那些地方需要修正。

Feasible fabrication of chitosan capped mesoporous silica nanoparticles as a smart mucoadhesive drug delivery platform for dexamethasone

中孔二氧化矽納米顆粒(MSN)由於其高孔隙率而適合成為藥物載體,可增加ul藥物的負載量。幾丁聚糖是一種帶正電的聚合物,用於修飾MSN表面,以達到強力的靜電吸附力,並進一步提高藥物負載能力,以及可持續併緩慢藥物釋放的控制。 MCM-41和 MCM-48型的MSN,通過 CTAB界面活性劑為模版,以溶膠-凝膠法制備。SBA-15型的MSN由 P123為模版製備。MCM-41 通過戊二醛的交聯進一步被幾丁聚糖包覆 (MCM-41-CHIT)。 利用 X 射線繞射儀驗證了所有載體皆是中孔洞的六方密堆積晶體結構。利用傅里葉變換紅外光譜,鑒定了烷基、胺基、和二氧化矽官能團,證實了表面的幾丁聚糖。 MCM-41-CHIT 的地塞米松載藥量為53.7%。MCM-41有突發釋放的現象,在 兩天內釋放出 80%。另一方面,MCM-41-CHIT中的藥物釋放,表現出恆定的釋放,五天後僅釋放出19.7%。 這項研究確定了MCM-41-CHIT 是可應用在粘膜吸附藥物遞送系統,可做為好的候選藥物載體。

Eco-friendly fungal-based protein wood adhesives: A non-toxic and effective alternative application

在真菌釀造過程中除了釀出需要的酒精、醋、醬油,味增,釀造後都會產生廢料:酒糟或酒粕改良性質後測試有作為木質黏合劑的潛力。我們選出 6 種菌種,透過破碎、離心、鹼裂解、酸中和與離心濃縮做出蛋白質膠,小量黏合能力測試結果選最佳的紅麴蛋白質與米麴蛋白質。參照 ASTM 標準壓縮負荷與拉力負荷法。 1.壓縮負荷法結果顯示紅麴蛋白膠抗剪強度為 156.1kgf,米麴蛋白膠抗剪強度為 51.3kgf,為對照組 82.2%與 27.0%。 2.拉力負荷法結果顯示紅麴蛋白膠抗剪強度為 88.1kgf,米麴蛋白膠抗剪強度為 40.2kgf,為對照組 195.1%與 89.0%。 實驗結果顯示紅麴蛋白膠在壓縮負荷法強度接近對照組,拉力負荷法強度顯優於對照組,在作為木材黏合劑選擇上提供一種天然且無毒的選擇。