全國中小學科展

臺灣

真實量子運算中的錯誤與修復:Qiskit 的噪聲模型與錯誤更正實驗

本研究旨在探討量子計算中由噪聲引發的兩種主要錯誤:位元翻轉錯誤(Bit-flip Error)與相位翻轉錯誤(Phase-flip Error)。我們首先利用 IBM Quantum 平台,透過即時模擬與圖像化操作,建構了一套重複更正碼系統,展示量子糾纏在錯誤校正中的應用。然而,當我們將錯誤更正碼送至真實的量子電腦運算時,發現額外的噪聲干擾使得錯誤更正碼的效率受到影響。因此,我們參考了 IBM 官方網站的資料,並結合在真實量子電腦上獲得的結果,使用 Google Colab 打造了一個最接近真實情況的噪聲模型,利用錯誤參數量化、分析真實量子電腦的出錯情形。

反泡泡的變形之舞:拉格朗日分析看見動力系統

入射界面活性劑滴第一次觸碰水面時可能直接入水,也可能不會穿透,形成水珠,但在高度較高而使其產生液柱之後再次掉落時,某些情況會產生反泡泡,本實驗將探討其發生條件。並且研究反泡泡在水中的運動情形。首先,我們設計並建立了一套穩定產生反泡泡的裝置,以確保其生成的可控性與重現性。其次,我們透過調整內部液體的密度,探討內部液體密度對反泡泡運動情形的影響。另外我們利用生成大量反泡泡使他們發生碰撞並探討其運動方程式。

描圖紙的捲曲行為變因探討

描圖紙又稱硫酸紙,經硫酸處理後形成部分纖維被轉化成凝膠狀且不可滲透性澱粉樣蛋白的紙張。本研究旨在探討該捲曲、反轉現象的各種可能變因,並推估該紙張捲攤行為的機制。經探討發現環境的溫、濕度影響其現象,且描圖紙接觸的溶液不同也影響運動。描圖紙本身變因有表面材料、大小及重量。不論描圖紙形狀,最後都以同一方向平行捲曲,與描圖紙上的纖維方向有絕對關係。進行不同面積方形描圖紙捲曲實驗,表面積越大的正方形描圖紙在捲攤現象花費較多時間,長形描圖紙捲曲速度則以非捲曲長度為影響因素。描圖紙表面處理的實驗,無論凡士林塗於描圖紙任意面,皆影響其捲攤。描圖紙較厚需更多時間完成現象。根據以上,推測為吸水使描圖紙膨脹導致。

極巨化vs小鋼炮—探討影響颱風暴風半徑之因素與模擬

本研究旨在探討影響颱風暴風半徑的因素,結合模擬實驗分析風場與降水特性。統計2010至2024年西北太平洋共358個颱風案例,結果顯示:颱風的強度與半徑正相關、且生命週期長、生成位置越東(145~155°E)、十月生成者,半徑普遍較大。我們依強度分類定義颱風的大小,發現大型颱風多沿副高邊緣西行後北轉並發展壯大;小型颱風則常直接西行。風場部分,大型颱風風場對稱且壯度大,小型颱風則較不對稱。颱風西行侵台時,結構易受地形破壞,過山後壯度下降,降雨集中於迎風面。 實驗以氣流場模型搭配水霧,改變抽風條件模擬不同規模的颱風,結果顯示,抽風電壓越強、抽風口直徑越大、氣流進入角越小,風場越大。加入台灣地形與木漿棉進行降水模擬,可驗證資料分析結果。

沃辛頓射流控制術-不對稱邊界的影響

沃辛頓射流是指物體掉入液體中後,在液體下形成空腔,經由表面張力的作用,空腔收縮並向上噴射的水流。瞭解射流機制與抑制射流引發的噴濺,在機械潤滑與公衛領域是重要的課題。本研究透過空腔與容器的交互作用,影響射流的形成空腔形變會改變表面張力的合力方向,使得局部收縮速率不同,進而影響射流的高度與方向。透過改變空腔兩側形變的程度,我們可以有效控制射流偏移方向,本研究進一步透過自製頂針,讓空腔局部變形,藉此產生射流偏移,證實張力波並非射流偏移的主要因素。本研究的成果,為射流的 研究提供一個新的觀點:空腔弧度大小決定收縮速率與方向,未來可藉此影響空腔收縮,協助科學家降低空蝕現象對機械的破壞。

石墨烯-銀異質結構的優化與功能開發 The Optimization and Development of Graphene/Ag-doped heterostructure

從家用微波爐到3C產品,皆有微波電磁干擾 (Microwave Electromagnetic Interference, MWEMI)的防蔽設計需求。依據2020年科展競賽作品中的薄層微量雙金屬催化技術可製得 Graphene/Ag-doped異質結構,但該作品未曾研究此材料的防蔽 EMI 能力。本研究優化此技術,成功將銀奈米結構沉積在石墨烯的缺陷及晶界邊緣,相關技術與實驗參數(化學氣相沉積法的加熱溫度、時長和通氣量)已發表於2023年科展競賽作品。本研究進階發現 Graphene/Ag-doped異質結構具高透明度和屏蔽 MWEMI 的能力,單層膜可屏蔽60%之 MWEMI,效能優於文獻上記載的2~3層石墨烯。而依據2023年文獻說明單層奈米碳管 (MWCNTs)異質結構經氟化處理後,可大幅提升 MWEMI 屏蔽效能,因此我們也將 Graphene/Ag-doped材料經由四氟化碳電漿處理,氟化後的屏蔽效能又比單層石墨烯-銀高出15倍,可遮蔽高達99.9%的 MWEMI。

解決空汙一起「走」

我們發現學校附近上下學時間車輛很多,造成空氣污染。為了解決這個問題,我們設計了一套「遊戲化學習系統」,鼓勵同學用走路來上學。我們利用Micro:bit和NFC技術來記錄每天的步數,再把步數變成遊戲裡的攻擊力,讓同學打怪升級、比賽得分。這樣不但好玩,還能減少二氧化碳的排放。研究發現,三天內大家一起走了超過八萬五千步,總共減少了大約68公斤的碳排放。問卷調查也顯示,大部分同學願意為了保護地球多走路,對這個遊戲系統也很感興趣。這個計畫成功讓大家更有動力走路上學,也學到了環保知識,還能當作其他學校的參考。

雙轉子反向相對運動對感應電動勢影響之研究

本研究針對傳統單轉子發電機效能不彰能量嚴重耗損,提出創新雙轉子技術以提升發電效率降低能源浪費。核心設計為雙轉子反向旋轉結構,透過相對運動提升角速度與磁場變化,增強感應電動勢生成。透過對比實驗,證實雙轉子結構較單轉子提升1.4倍感應電動勢,參考Weber Fechner Low建立對數數學模型,描述電動勢與旋轉參數之非線性關係。 同步研發雙轉子架構展現穩定性與模組化彈性擴充,具備取代傳統發電機潛力,適用於分散式發電與再生能源領域,展現高效、緊湊且具實用價值之創新應用電力生成技術方案。

「千菌一髮」---以細菌纖維素製作假髮之可行性研究

近年來,癌症患者或因為其他特別的因素所導致的脫髮人群逐漸增加,因此假髮的製作材料需求,隨之提高。本研究即針對此問題,以及假髮所需具備的耐熱性、耐拉扯性、染色難易度等性質,透過生物材料(細菌纖維素)作為製作假髮的替代選擇,以解決現有假髮之透氣性差、製作成本及天然人髮供應的限制等問題。實驗過程探討將細菌纖維素進行改質,經有機矽(聚二甲基矽氧烷)表面處理後之耐熱性、耐拉扯之機械強度等性質;以及植物染料與市售染膏的染色效果,作為自然外觀的評估。研究結果顯示,以細菌纖維素作為假髮製作的新型天然材料具備低成本、易染色、良好的耐熱及耐拉扯特性。

ECO智慧校園

本研究利用樹莓派Pi 4B、PicoW及各式感測器建構校園環境的自動化系統。整體架構中以Pi 4B為核心,負責各項資料以MQTT 技術傳送交換及Node-RED做數據呈現,PicoW則控制著各感測器操作。首先,從三種形式的LED燈找出最適合做為教室智慧燈光的燈光源,利用光照度感測器讀取光照度值反饋給LED控制器,自適應調整LED發光亮度PWM值;再利用人體運動感測器做為燈具自動開關的依據。另二個PicoW連接PM2.5、溫濕度感測器及太陽能路燈、水泵,隨時偵測校園環境的PM2.5值及溫濕度並自動化操作各設備。最後,以平板載具即時顯示各設備狀態,以可視化web界面觀察教室內燈光及校園內各項設備運作情形。