全國中小學科展

臺灣

消波~快!2.0

延續去年的實驗做進一步的改善與測試,這次我們新增浮動式的消波塊觀測其消波的情形,實驗過程中,在無精密儀器下觀察波速與波高,是一件令人感到棘手之事,所幸目前影像分析技術大行其道,因此本實驗的觀測資料均由電腦影像分析輸出並整理。固定式消波塊的實驗結果蠻符合我們的預期,能以簡單的消波塊結構達到消波的功能,實驗數據顯示出原本岸邊的最大波高,可銳減至原有的三分之一左右,效果驚人,真的是消波~快!反之,浮動式消波塊的結果與預想有一段落差,最大原因是消波塊隨著液面升降,上方無足夠的水體產生足夠大的水壓,因此無法順利引導水流通過洩壓裝置,導致消波結果不如預期。

鏡下心來

本研究從探討平面上任點對任意三角形所鏡射出之三角形的心,與原三角形的心是否具有關聯性開始。鏡射三角形即是平面上任一點分別對三角形的三邊延長直線做鏡射後,所得到三點形成的三角形。在特定情況下,鏡射三角形的心與原三角形的心之間有所關聯。之後進一步觀察不同點對固定角度之三角形作出之鏡射三角形的各個心之間的關係,以及這些鏡射點的連線與原點連線間的關係,也利用固定角度之三角形所推出的規律,繼續探究任意角度的三角形的各個心,與鏡射三角形的心之間的關聯。

神秘的三角格局:塗色規則下的奇幻案圖

本研究在探討數學雜誌《Crux Mathematicorum》2024年公告的題目MA 288.所產生的方格紙圖案分布的規律。我們先解開該題,並透過繪製與分析不同大小的圖形,觀察圖案的規律,並利用此規律求出第 𝑛 列及前 𝑛 列綠色方格數的遞迴關係與一般式。 我們發現在𝑛×(𝑛+1) 的方格紙中,當𝑛為2的次方時,綠色方格圖案會形成一個類似謝爾賓斯基三角形的完整三角形,且每當𝑛增加2的1次方時,綠色方格圖案會利用自我複製的方式形成新的圖案。因此可以把𝑛轉換成二進位的表示法,利用二進位中1的位置與數量推論出方格圖案的樣貌與綠色方格數。 除了利用塗色的方式觀察規律外,本研究還將原問題條件轉換成不同的敘述,方便利用excel繪製圖案,將問題推廣到𝑛×𝑚方格。

探討影響跳舞草側葉擺動的機制

本研究以跳舞草與動物互動的演化關係,探討影響跳舞草側葉擺動因素,了解其小葉擺動背後的機制與生物意義。我們針對光照、音頻、溫度、電流干擾及大葉處理等條件進行實驗設計,亦使用自製的植物電壓感測器測量電位變化。結果顯示,跳舞草小葉在溫暖、光照充足、高頻音環境條件下,擺動速度加快、振幅增大。進一步分析顯示,小葉擺動與葉枕的電位變化有相關,且外加電流會干擾使其擺動速率變慢。大葉遮光會降低小葉擺動速率,而摘除大葉則會提升擺動速度。綜合實驗結果,推測跳舞草的擺動機制除受環境影響外,也是一種生物演化策略,用以模擬昆蟲活動以吸引掠食性動物,有助於驅離害蟲。且進一步揭示跳舞草葉片運動的電生理基礎與可能的生態意涵。

泡泡之聲-利用氣泡頻率測量雙氧水分解的反應級數

在傳統的反應速率實驗中,反應速率常以質量減少、體積變化或顏色變化等物理量作為指標。然而這些方法通常需仰賴精密儀器或誤差較大,又或者耗時較長。本研究嘗試以氣體生成反應中產生的氣泡聲頻率作為分析依據,結合聲音分析軟體 AUDACITY,從氣泡震盪頻率觀察反應速率及計算推導反應級數大小。此方法不僅器材簡便,也具備低成本,能提供 一個簡單快速測量反應級數的方法。

大氣常壓微電漿合成共價有機框架應用於光催化降解汙染物

為了解決水污染問題,本研究探討共價有機框架(COF)作為光催化劑的應用。COF具備高度可調孔洞、高穩定性及選擇性吸附等優勢,有助於有效去除水中污染物,對未來具有前景。本實驗採用大氣常壓微電漿合成COF,此方法能在室溫下以水為溶劑,無需高溫或有毒化學品,並僅需一小時即可完成合成,具有綠色化學優勢。實驗結果顯示,成功合成的COF能有效降解水中常見染料污染物(結晶紫及亞甲藍),證明了COF的高效光催化性。在紫外-可見光光譜中,隨著光催化反應的進行,染劑吸收波峰顯著減弱並幾乎完全褪色,確認了COF優異的降解能力。掃描電子顯微鏡圖像顯示,COF的高度有序孔洞結構提升了其催化活性與穩定性。這項技術不僅能高效處理水中有機污染物,還具備廣泛應用潛力,有望為全球水污染治理與環保提供新思路。

第一電池-探討利用地衣共生真菌與藻類建構長效微生物電池之可行性

本研究旨在探討如何利用地衣共生藻類與共生真菌天然的互利性來建構長效的微生物電池,此實驗將培養出的地衣共生真菌與藻類利用海藻酸鈉(SA)進行固化,並進一步製成不須添加質子交換膜的晶球地衣電池,並觀察其發電量。經觀察,本研究之地衣電池電壓高峰為0.497 V,且目前已維持運作1038小時,電壓仍有0.3 V。由上述可知,利用海藻酸鈉固化之方式能製作出穩定且高效能的地衣電池;而地衣取自於自然環境,亦不需添加質子交換膜,故對成本低廉且環境友善成本低廉,符合永續發展目標(SDGs)中的目標七:確保所有的人都可取得負擔的起、可靠、永續及現代的能源。期許未來能夠發展為具備實用性且低成本的綠色能源。

沙盒類遊戲式學習平台系統伺服器架設節能效率研究:以Minecraft為例

本研究以 Minecraft 為例,探討沙盒類遊戲式學習平台系統伺服器架設的節能效率,旨在透過動態調整伺服器數量降低總CPU使用率,提升伺服器的管理效能和能源使用效率。隨著線上遊戲的普及,伺服器的營運管理變得越來越複雜,如何在滿足玩家需求並同時降低能源消耗成為一個重要議題。本研究將分析伺服器資源使用狀況,特別是在玩家活動量高低波動的情境下,透過管理策略的調整,探討其對節能效率的影響。 研究透過實證數據的收集與回歸分析,建立一套可應用於 Minecraft 伺服器的節能動態調整系統,並探討動態調整的具體效率。研究結果發現隨著玩家人數增加,越接近系統負載上限,節能效果會越來越不明顯,以本次研究的伺服器來講玩家人數到達35人以後就無法再減少伺服器數量。

臺灣西南部古亭坑層泥岩之古水深變化

二仁溪剖面因受到小滾水逆斷層截切 ,而分為東、西剖面兩部分,東剖面的地層較老西剖面的地層較年輕,故推測該地區東剖面古水深較西剖面深。本研究利用微體化石有孔蟲比例(%P)進行研究,希望能夠探討臺灣西南部沉積盆地的演化,以及二仁溪剖面地區的古水深變化與粗顆粒含量的相關性。但由於本研究使用的樣本並沒有採樣於每一沉積岩層,故臺灣西南部沉積盆地的沉積物供應量與構造抬升的因素仍需進一步的研究。

利用體外測試方法探討生醫水凝膠與材料表面附著性質之關聯 Investigation of the relationship between biomedical hydrogels and surface adhesion properties using in vitro testing methods

醫療級水凝膠在注入人體後容易因運動行為而產生位移,因此需要體外測試方法來評估水凝膠的附著性,以製備適合不同部位使用的水凝膠。本研究設計兩種測試方法來模擬水凝膠在人體的斜角流動狀態和旋轉流動狀態的位移,藉此推斷水凝膠施打入體內後的變化。本研究採用兩種不同黏性的水凝膠和不同粗糙度表面如人工皮、陶瓷和金屬來模擬人體部位的接觸面,探討水凝膠的附著性質。斜角流動測試下,黏性高的水凝膠在陶瓷和金屬 30°、45°及90°的斜角下幾乎不會流動,黏性低的水凝膠則會隨著角度的增加而流速加快。陶瓷粗糙度最高,水凝膠在其表面上附著性質較強。旋轉流動測試下,高黏性的水凝膠在模擬跑步時都具穩定性,而低黏性則只適用於較穩定的步行狀況。體外測試方法能區分不同黏性水凝膠的附著性質,說明此方法可作為篩選適用的水凝膠的依據。