Tamarind(Tamaridus Indical.)Seed Coat Extracts As Coconut Oil Antioxidant
After short period of storage the coconut oil at room temperature we found that it becomes rancid. The oxidizing flavor is disgusting and causes economic loss. Some chemicals are used to prevent the oxidation of coconut oil but they are expensive and may be harmful to consumer’s health if used daily. Moreover, they are not suitable for homemade coconut oil and residual waste from the process may be environmental toxic. The present work thus aims at extracting substances from local plants and used as antioxidant for coconut oil. Seven kinds of local Caesalpiniaceae plants in Eastern Thailand namely Tamarind (Tamaridus indica L.), Peacock flower Caesalpinia pulcherrima L.), Flame tree (Delonix regia L.), Golden shower (Cassia fistula L.), Siamese cassia (C. siamea Lamk.), Candelabra bush (C. occidentalis L.), and Copper pod (Peltophorum pterocarpum DC.) were used. Ten grams of seed coats were mixed with 50 ml of the distilled water and 95% Ethyl alcohol (1:1) mixture in a closed container. The mixture was heated in a water-bath at 60 ℃ for about 2 hrs. and then kept in 10 ℃ icebox about 2 hrs. The mixture was then filtered and the filtrate was heated in an hot-air oven at 80 ℃ for about ? hrs. Ten ml of coconut oil was added with 0.5g of the extracts and kept at room temperature for 5 days. The pH and peroxide value (using the Iodometric titration method) of the oil were measured. It was found that the coconut oil with the Tamarind seed extract had the lowest peroxide value and was selected. Next the suitable amount of the Tamarind extract was studied by adding the extract to 10 ml coconut oil at 0-7% (w/v) and the contents were kept at room temperature for 5 days. The result showed that the 3% (and more over) Tamarind extract had the lowest peroxide value. Then the coconut oil with 3% Tamarind extract was kept at room temperature for 30 days. The pH and peroxide value were measured every 5 days. It was found that the oil could be stored for 25 days without significant change in pH and its peroxide value was less than 10 milliequivale n t oxygen per kilogram oil according to FAO/WHO (Codex) standard .Therefore, Tamarind seed coat at 3% could be used to retard the coconut oil oxidation for 25 days. This work presents the applicable use of plentiful local plants such as Tamarind seed, which is normally discarded, as an antioxidant for coconut oil.
Dynamic Geometry and Problem Solving
Within the framework of the new educational model for mathematics based on constructivism, results are presented of the design, application, and evaluation processes of a series of didactic sequences aimed at developing the student’s abilities for problem solving as part of the geometry curriculum for technological preparatory schools, using the Cabri-Geometre II software. In this case, subjects of study were ten newly enrolled students from CETis 18 preparatory school in Mexicali, Baja California, Mexico. The theoretical basis for this work is the constructivist approach, mainly emphasizing Mashbits views (1997) regarding problem solving. This didactic proposal was longitudinally applied in a quasi-experimental qualitative design under the following analysis categories: problem solving skills and the impact of Cabri- Geometre II in geometry learning. Recognizing the potentiality this research can have with the proper follow-up, it is intended to include it in the preparatory school curricula. For this purpose, teachers should be trained to focus their work on learning instead of on teaching. As a result of this, designing educational programs will require for teachers to become more knowledgeable not only in discipline, but in the use of computer technology, the teaching process, learning, and the students themselves. The final objective of this project is to instill educators to play this new role. As a final point, conclusions on various psychological, pedagogical, and technological aspects are given placing emphasis on the creation of learning situations with their appropriate theoretical support. Using the Cabri-Geometre II as a resource, these situations will provide geometry teaching with a more dynamic and interesting concept applicable to real-life situations.
Electronic Lrrigating Machine
The purpose of research:Lies the importance of research in rationalizing the consumption of water during the irrigation of gardens, farms and green spaces. Where the world suffers from the problem of water scarcity, especially groundwater was the slogan of World Water Day in 2007 ((water scarcity)), and therefore we find through studies and scientific research that the world is suffering from a marked decrease in the water up to 30% and thus to drought. The one of the reports issued by the United Nations Environment Programme, that more than half the world's population will live during the next thirty years until in 2032, In areas suffering from water shortages, and West Asia, including the Arabian peninsula will be more areas suffering from water shortages, are expected to live about 90% of the population in areas suffering from water shortages in 2032. Steps of scientific research: Theme: the rationalization of water consumption in irrigation How can rationalize water consumption and maintenance? How to benefit from raw materials to the environment be friends of the environment and water? How to maintain in our hemisphere is suffering from the problems of pollution? R: field environment Compile information: Started to develop the idea of working model in detail (scientific deliberate scheme) of the parts used in the rationalization process model and then work on the ground. Forming hypotheses, research and analysis of information: Assume that the flow of water through the faucet immediately for a period of one minute quantity of 2 liters permission when using pregled control the flow of water and a minute amount of water will be 0.2 liter. Suppose that the system used in the rationalization process is linked with the timing of rush hour drops of water every minute and measuring the quantity flowing from the pipeline, we find it 2 / 10 from the amount of water flowing from the tap directly. Procedures used: Been working model ready by using the following tools: Ban small-sized water Basin water model using plastic-coated shell and clay. Wall hours with wire sensitive prove on the basis of hours rolled aluminium conductor of electricity affected debates clock Plastic trees. Electricity wires - the context of an electric effort to 220 volts. The idea of working model: Labour deliver electric power 220 volts. Scorpion am touching on the sensitive installed base pm (aluminium foil) relates to the electric dynamo worked on the flow of water to the delicate moment senses only wait until touching once again to work regularly. Conclusion: Conclude that the rationalization of water consumption by 90% during irrigate parks and green spaces and farms. Perception of the future work: Research can be developed so that rationalization for more than a minute using the control and distance.
Mathematical Analysis of Root Growth in Gamma-irradiated
Root growth is related to the acquisition, distribution, and consumption of water and nutrients of plants. As a vital organ, roots directly take the effect of environmental change and its behavior is closely related to the growth of the whole plant. With such, the importance of root systems has motivated botanists to seek a better understanding of root branching complexity. This complexity, which has been difficult to comprehend using simple Euclidean methods (i.e. lines and circles), is important to the survival of plants, especially when the distribution of resources in the environment is scarce. Mathematical models using fractals and computers can be applied to accurately understand the growth and form complexity of plant root systems. This study was conducted to analyze the root growth of gamma-irradiated cashew and mangosteen using fractals.
Energy-Transformation Railway System
There are numerous problems caused by today's railway system. This makes Hong Kong a less attractive place to live in. We have to tackle these problems in order to make Hong Kong a better place. Our model can recycle the energy dissipated in the rail vibration, reuse the sound energy produced by the wheels and the rail by a sound energy conversion system, recycle the wind power in the tunnel by a new type of wind turbine, the Wind Power Generator Underground (WPGU), recycle the thermal energy produced by the air-conditioning system of railway stations by a new system, the Thermal Energy Conversion (TEC). When the rail is bent, the magnets attached to it are also pulled down. When the rail returns to its original position, the magnets attached to it are pulled out of the coils. In both cases, the magnets move against a force. The work done to move the magnets against the force is converted to electrical energy. Also, the bottom of the MTR is designed to be curved. The sound waves produced by the contact point of the wheels and the rail directing towards the bottom of the MTR would be reflected to an elastic material which has a number of magnets attached to it and corresponding number of solenoids are fixed on the ground below the magnets. Sound energy can be converted to electrical energy in this case. When a train approaches or passes through the section that the WPGU is installed, wind is generated. The wind forces the wind turbine to rotate at a certain high speed. The turbine transmits the rotation to the coils in the dynamo, and hence electricity is generated. Heat released from the air-conditioner is absorbed by water. The hot water is then pumped into the system. As the hot water in the pipe flows through the evaporator, liquid ammonia inside will evaporate and flow into the electricity generator. Inside the electricity generator, the gas will push the turbine to rotate and hence electricity is generated. The ammonia gas is then condensed in the condenser and flows back to the evaporator. Hence ammonia is used circularly. In order to explain our principle, we would like to introduce the Lenz's Law, an induced current flows in such a direction as to oppose the movement that started it, the Faraday's Law of electromagnetic induction, the induced electromotive force in a circuit is equal to the rate of change of magnetic flux through that circuit, the Law of Conservation of Energy, energy can neither be created nor destroyed, but can transform from one form to the other.