全國中小學科展

化學

Direct reductive amination of camphor

Terpenoids are an irreplaceable class of natural products. The camphoryl group is an important moiety in the structure of chiral ligands for asymmetric synthesis catalysis or it can be used as an auxiliary group in asymmetric synthesis.[1] The usage of fenchone based molecules for asymmetric catalysis and synthesis is less common because of the difficulty of fenchone modifications due to steric hindrance. Camphor is a readily available starting molecule for the preparation of different compounds with biological activity. For example, camphor diimines demonstrate antiviral activity.[2] Fenchonyl amine-based molecules are potential therapeutic agents for the treatment of Alzheimer’s disease. Amines are a crucial class of organic compounds with multiple academic and industrial applications. There are a plethora of synthetic approaches towards amines synthesis and modifications, reductive amination being one of the most powerful and useful methods. However, the reductive amination of camphor and fenchone remains a challenge. A standard approach to reductive amination with amines other than ammonia and methylamine includes two steps: preparation of azomethines or Schiff bases in the presence of strong Lewis acids and their reduction with more or less conventional reducing agents. The synthesis of fenchonyl amines is even more challenging. There is no universal approach, and almost every manuscript reports some particular protocol different from others. In most cases, the first stage of this process requires quite harsh conditions. For example, the preparation of a Schiff base from camphor and 1-phenylethylamine requires 5-10 days of heating at 150°C.[3] Schiff bases of other primary amines could be prepared under similarly harsh conditions. Preparation of enamines is possible using titanium tetrachloride as a catalyst. The reduction also might be challenging. Sodium borohydride or sodium cyanoborohydride was described as suitable for this goal in several reports.[4] To the best of our knowledge, no papers describe any general approach for the direct reductive amination of camphor or fenchone. There is only one example of camphor direct reductive amination without an external hydrogen source using carbon monoxide as a reducing agent. This protocol is very efficient but its application is limited by the necessity of carbon monoxide and high-pressure equipment for the reaction setup.

利用硫醇分子合成金奈米團簇應用於檢測自來水及游泳池水中次氯酸根

隨著大眾對於衛生要求的上升,許多抗菌及消毒成分被廣泛應用於水質處理中,其中次氯酸作為消毒殺菌劑大量使用於泳池及自來水的水質淨化中,然而現行標準方法測定水中有效氯所使用具危害的毒化物且步驟繁雜不利普及民生使用,發展簡便快速且靈敏的偵測方法勢在必行。本研究利用牛血清白蛋白(Bovine serum albumin, BSA)、不同的硫醇分子及金離子合成具螢光特性之硫醇修飾金奈米團簇 (Thiol ligand assists BSA capped gold nanoclusters, BSA/RSH-Au NCs),探討添加不同硫醇分子對所合成之金奈米團簇於不同pH值及常見離子對螢光強度之影響,並利用具有最佳螢光穩定性之2-巰基苯甲酸修飾金奈米團簇(Thiosalicylic acid assists BSA capped gold nanoclusters, BSA/TA-Au NCs),透析後進行次氯酸根檢測,其檢測線性範圍為0.98μM-1000μM,涵蓋法規規定游泳池水及自來水中次氯酸根之容許殘留濃度,最後此方法成功於游泳池水及自來水基質中檢測次氯酸根,分析樣品的回收率介於94.4%-95.6%。此外,在紙上添加金奈米團簇,並加入不同濃度的次氯酸根,觀察其螢光強度的變化,期望此方法未來應用於快篩試紙塗布材料快速檢測水質中次氯酸根濃度。

以農業廢棄物芝麻稈做為紡織業常用染劑吸附材質之探討

本研究的重點是使用芝麻稈作為高效的吸附材,進而從水溶液中去除在染紡工業上常用的亞甲藍、剛果紅及雅里西安藍。在研究中,我們分別以吸附時間、pH值、吸附起始濃度作為操作變因,研究其物理、化學參數如吸附率、移除量、反應級數、吸附模式等等之變化[1][5]。使用UV-Vis光譜儀製作檢量線,推算各條件下所得之剩餘濃度,並由此計算其他所需之參數。本研究使用pseudo-first-order及pseudo-second-order進行動力學之分析,我們可以發現芝麻稈對於亞甲藍[3][4][5]、剛果紅[2]及雅里西安藍之吸附均符合pseudo-second-order模型;最佳吸附pH分析則可得知,亞甲藍於pH=5、剛果紅於pH=7,雅里西安藍於pH=8下可得最佳吸附效果;如使用恆溫吸附模型分析其吸附行為,則由實驗結果我們可以得知:亞甲藍符合Langmuir Isotherm及Freundlich Isotherm、剛果紅符合Langmuir Isotherm、雅里西安藍則符合Freundlich Isotherm;而其最大吸附量分別高達每克吸附材可吸附6624.75毫克亞甲藍、10815.74毫克剛果紅或18574.4毫克雅里西安藍。

Synthesis of Macro Porous Activated Carbon from Waste Polyethylene Terephthalate (PET) Bottles and Investigation of Usability in Dye Removal from Water Sources

Colorants are used in many industries, especially in the textile industry. These substances both cause visual pollution and create an anaerobic environment for aquatic creatures. In this study, it is aimed to examine the usability of activated carbon synthesized from waste polyethylene terephthalate (PET) bottles, which is an important environmental problem, in removing the pollution caused by the colorants caused by industrial activities in water resources.

銠金屬催化劑應用於優化不對稱加成反應

本研究是以台灣學者開發之銠金屬催化劑與Benzocyclobutenol和Cyclodienenone進行不對稱加成反應作為實驗目標,利用不同的溶劑在不同溫度下進行反應,探討產物的衍生物產率和鏡像超越值的差異。 首先,尋找出一個最佳反應條件,改變濃度、溫度、比例等變因並優化反應。接著嘗試改變Cyclodienenone上的官能基組合,觀察其對反應造成的影響並探討,及測試此銠金屬催化劑對不同官能基的容忍性,增加其官能基廣度。 實驗結果顯示,大部分反應條件產率可達60%以上,光學選擇性e.e.超過 90%。未來希望能將此銠金屬催化反應應用於不對稱藥物合成,成為一個合成高光學選擇性和高光學活性產物的方法,達到省時、省錢及高效之目的。

微量氧化亞錫參雜與氧化鎢光觸媒之光電催化性質探討

太陽能是地球上最豐富的能源。我們這裡研究的光催化劑主要用於進行重要的化學反應,例如利用陽光進行污染物降解和製氫。光催化劑的靈敏度取決於半導體材料的組成。在這項研究中,提出了一種氧化錫和氧化鎢的錫(II)光催化劑(SnO-WO3或SnO2 / WO3)與p-n結半導體材料結合。我們發現重要的事實是,含有少量SnO2和WO3的光催化劑展示了敏感的光催化活性。使用光纖的掃描電化學顯微鏡(SECM)快速篩選SnO2-WO3光催化劑陣列以進行有效的光電化學反應,我們使用小於10%的SnO2量摻雜WO3。然後在0V vs.Ag/AgCl的條件下,我們發現在紫外線和可見光照射下,組合物中3:97 SnO2 / WO3的微小比例能夠顯示出最高的光電流。利用第一原理(DFT)計算,我們得到了接近費米能中SnO2的帶隙約為1.40 eV。我們認為這種小的帶隙和費米能級附近的態密度(DOS)分布是SnO2對n型WO3敏感的原因。

Synthesis of Mesoporous Carbons and Their Application for EDLC

The quick increasing energy consumption arouses the interest in the development of power storages. Electrochemical supercapacitor is one of clean and sustainable candidates of energy storage system, and porous carbons are the most potential candidate as electrode materials for electrochemical supercapacitor because of their large surface areas, high chemical and physical stability, good conductivity, as well as low cost. In this work, we synthesized the mesoporous carbons by using ZnO nanoparticles as sacrificing template via nano-casting synthetic process and natural porous carbon materials. The synthesized porous carbon has a mesoporous structure. Because the surface area and pore size of the synthesized mesoporous carbon are larger than that of the coconuts fiber-derived carbon, the CV plots show that the synthesized mesoporous carbon has a good rectangular shape and a much better performance than that of the coconuts fiber-derived carbon. We also develop an easy way to discriminate how well a supercapacitor works. We applied these porous carbon-based electrodes on both handmade as well as the commercial capacitors and measured their electrical performances. The handmade EDLC is less efficient than the commercial capacitor.

Dependence of Alloy Composition in Color Change of Brass Foil by Oxide Thin Layer Formation

It is known that copper foil undergoes a color change in heating by oxide thin layer formation. Therefore, we focused on the color change by the oxidation of brass foil. Brass foil (Akaguchi (Cu87%Zn13% alloy) and Aoguchi (Cu85%Zn15% alloy)) also undergoes color change by oxidation, and it shows heating time and temperature dependence. Brass foil need longer heating time to appear color change than copper foil, and we can visually confirm that the brass has corrosion resistant. In addition, color change of brass foil depends on the percentage of copper in the brass, and Aoguchi shows rapidly color change in same heating condition. We show that brass has different physical properties than copper, even with a high percentage of copper in brass, and this was verified through comparison using diffusion length and RGB data in Aoguchi and Akaguchi. We demonstrate these colored brass foils are used as art materials, and our results expanded material using possibility of brass foil.

發光基團與巴克球作為二氧化碳還原光觸媒之研究

本研究使用巴克球C60或巴克球衍生物PC61BM作為主催化劑,發光基團DTBT作為副催化劑,製成混摻催化劑並調控各種變因,進行光催化二氧化碳還原反應,期許能設計催化效果最佳之有機光觸媒,達到開發再生能源與減緩溫室效應之目標,甚至應用於殺菌與分解汙染物等其他方面。 利用氣相層析儀進行二氧化碳還原產物之定性及定量分析,目前產物以一氧化碳為主、甲烷為輔,主、副催化劑混摻之產率優於單一催化劑,主催化劑選用PC61BM優於選用C60,DTBT與PC61BM混摻莫耳比為1:1時一氧化碳的產率最佳,而莫耳比為2:1時甲烷產率較佳。若在反應瓶中添加氫氣或增加水量,皆有助於提高甲烷的產率。在製程中添加奈米銀製成三元混摻元件,可大幅提升產率,是未來研究方向。

『冰清欲結』-探討不同條件溶液結冰時溶質匯聚現象的差異

我們發現有些水溶液結冰後會推擠溶質到中央匯聚成顏色較深的區域,但有些溶液卻不會,到底是什麼原因造成此現象的差異?於是我們操縱各種變因來觀察它們對溶液結冰時溶質匯聚表現的影響。 實驗發現並非所有的濃度都會匯聚;不同溶質的匯聚情形也不同;水質所含雜質越多匯聚效果越差,且結冰後氣泡分布也各有特色;上下等寬的容器呈角錐狀匯聚,下窄上寬的容器則為柱狀匯聚;先結冰的地方會推擠溶質到後結冰的地方且結冰速率越慢匯聚程度越好;最後我們利用保麗龍包覆+重力方向來控制結冰順序使冰晶推擠力達到加倍的效果,再透過自製離子濃度檢測器發現冰塊中溶質匯聚區的濃度並非均勻一致,而是依結冰的順序而有低、中、高的「濃度梯度」現象。