Synthesis of Macro Porous Activated Carbon from Waste Polyethylene Terephthalate (PET) Bottles and Investigation of Usability in Dye Removal from Water Sources
Colorants are used in many industries, especially in the textile industry. These substances both cause visual pollution and create an anaerobic environment for aquatic creatures. In this study, it is aimed to examine the usability of activated carbon synthesized from waste polyethylene terephthalate (PET) bottles, which is an important environmental problem, in removing the pollution caused by the colorants caused by industrial activities in water resources.
Dependence of Alloy Composition in Color Change of Brass Foil by Oxide Thin Layer Formation
It is known that copper foil undergoes a color change in heating by oxide thin layer formation. Therefore, we focused on the color change by the oxidation of brass foil. Brass foil (Akaguchi (Cu87%Zn13% alloy) and Aoguchi (Cu85%Zn15% alloy)) also undergoes color change by oxidation, and it shows heating time and temperature dependence. Brass foil need longer heating time to appear color change than copper foil, and we can visually confirm that the brass has corrosion resistant. In addition, color change of brass foil depends on the percentage of copper in the brass, and Aoguchi shows rapidly color change in same heating condition. We show that brass has different physical properties than copper, even with a high percentage of copper in brass, and this was verified through comparison using diffusion length and RGB data in Aoguchi and Akaguchi. We demonstrate these colored brass foils are used as art materials, and our results expanded material using possibility of brass foil.
利用硫醇分子合成金奈米團簇應用於檢測自來水及游泳池水中次氯酸根
隨著大眾對於衛生要求的上升,許多抗菌及消毒成分被廣泛應用於水質處理中,其中次氯酸作為消毒殺菌劑大量使用於泳池及自來水的水質淨化中,然而現行標準方法測定水中有效氯所使用具危害的毒化物且步驟繁雜不利普及民生使用,發展簡便快速且靈敏的偵測方法勢在必行。本研究利用牛血清白蛋白(Bovine serum albumin, BSA)、不同的硫醇分子及金離子合成具螢光特性之硫醇修飾金奈米團簇 (Thiol ligand assists BSA capped gold nanoclusters, BSA/RSH-Au NCs),探討添加不同硫醇分子對所合成之金奈米團簇於不同pH值及常見離子對螢光強度之影響,並利用具有最佳螢光穩定性之2-巰基苯甲酸修飾金奈米團簇(Thiosalicylic acid assists BSA capped gold nanoclusters, BSA/TA-Au NCs),透析後進行次氯酸根檢測,其檢測線性範圍為0.98μM-1000μM,涵蓋法規規定游泳池水及自來水中次氯酸根之容許殘留濃度,最後此方法成功於游泳池水及自來水基質中檢測次氯酸根,分析樣品的回收率介於94.4%-95.6%。此外,在紙上添加金奈米團簇,並加入不同濃度的次氯酸根,觀察其螢光強度的變化,期望此方法未來應用於快篩試紙塗布材料快速檢測水質中次氯酸根濃度。
Synthesis of Mesoporous Carbons and Their Application for EDLC
The quick increasing energy consumption arouses the interest in the development of power storages. Electrochemical supercapacitor is one of clean and sustainable candidates of energy storage system, and porous carbons are the most potential candidate as electrode materials for electrochemical supercapacitor because of their large surface areas, high chemical and physical stability, good conductivity, as well as low cost. In this work, we synthesized the mesoporous carbons by using ZnO nanoparticles as sacrificing template via nano-casting synthetic process and natural porous carbon materials. The synthesized porous carbon has a mesoporous structure. Because the surface area and pore size of the synthesized mesoporous carbon are larger than that of the coconuts fiber-derived carbon, the CV plots show that the synthesized mesoporous carbon has a good rectangular shape and a much better performance than that of the coconuts fiber-derived carbon. We also develop an easy way to discriminate how well a supercapacitor works. We applied these porous carbon-based electrodes on both handmade as well as the commercial capacitors and measured their electrical performances. The handmade EDLC is less efficient than the commercial capacitor.
Sustainable G-Polymer From Industrial Waste
This study focuses on the pre-treatment of paper sludge ash (PSA) as a by-product of paper milling industry that contains high amount of calcium, yet low in silica. The presence of high calcium content in geopolymer system will accelerate the setting time of fresh geopolymer and may disrupt the development of its mechanical strength. Therefore, in this study, the refinement of PSA properties was conducted by treating raw PSA in hydrochloric acid solution with different molarities of 0.5 M, 1.0 M and 2.0 M. The pre-treatment process was mainly purposed to decrease the amount of calcium and other impurities through leaching mechanism. Based on the experimental results, 2.0 M hydrochloric acid solution (HCl) was determined as the optimum concentration due to its ability in removing higher amount of calcium from the ash, yet still able to increase the amount of silica. Compression test on the hardened properties of geopolymer specimen also showed the deceleration of fresh fly ash based geopolymer and produced a more workable fresh geopolymer.