全國中小學科展

化學

不同形態鈀金奈米觸媒的探討及對直接乙醇燃料電池的應用

本實驗成功在水相以及相對低溫中合成均一度高的鈀金奈米觸媒,並藉由引入不同比例的界面活性劑到合成系統中,來促使不同形態的鈀金奈米觸媒生成。此種奈米觸媒於不同成分比例下可產生相異之催化表現,且具長時間穩定的優點,故為具潛力的燃料電池觸媒。 實驗過程除了探討不同形態的鈀金奈米觸媒的合成外,並進行CO電氧化、乙醇電氧化以及長時間穩定測試。由合成的結果可得知,不同比例的CTAB及CTAC搭配可以得到合金或核殼結構的鈀金奈米觸媒;電催化實驗中,首先藉由CO吸脫附電氧化求得觸媒的活性表面積後,再進行乙醇電氧化測試,進而發現以核殼AuPd為1:1活性表現最佳,較商用Pd觸媒高約4.09倍;長時間穩定測試中AuPd核殼觸媒比商用Pd觸媒有有約16倍的穩定度及容忍力的提升。本研究結果有助進一步利用鈀金觸媒改善純鈀在進行乙醇燃料電池上的應用。

使用低成本生物可分解離子液體電解質之鋁空氣二次電池

本研究創新使用一種生物可分解之離子液體作為鋁空氣二次電池之電解質。與文獻上使用的高價且含毒性的咪唑類離子液體相比,本研究合成的離子液體原料為甘油與氯化膽鹼,均為成本低廉且對人體無害的環保材料。延續過去參加新竹市中小學科展題目「可撓性輕量化鋁空氣電池」的成果,此次國際科展的內容更進一步延伸為可充電式的鋁空氣二次電池,除了電解質的創新外,亦包含電極方面的革新,如陽極除了採用純鋁外,另探討使用鈦鋁合金來減緩腐蝕。在空氣電極方面,除了添加活性碳來增加吸附氧氣的表面積外,另添加二氧化錳來增加氧氣還原的活性。

Plexiglas: from synthetic glass to cationic exchanging resin

Plexiglas is a macromolecule (poly-methyl-methacrylate) obtained by polymerization of the Methyl Methacrylate. Cation exchanging resins have acidic groups such as COOH (carboxyl) and SO3H (sulfonic) which fix metallic cations dissolved in water releasing an equivalent of protons through the following reaction: 2 RCOOH + Me2+ (RCOO)2Me + 2 H+ Regeneration is made treating the exhausted resin with diluted hydrochloric acid (HCl) which moves the equilibrium to the left. The aim of our research is to re-use the discarded Plexiglas by transforming it into a cationic exchanging resin. Alkaline hydrolysis transforms the COOCH3 group into COO– group; the obtained group is then transformed into COOH group by means of a treatment with HCl. After the alkaline hydrolysis spectra of the solid show the characteristic band of the asymmetric stretching of the COO– (1610-1550) at 1567 (1st experiment) and at 1555 (2nd experiment). Instead after the acidic treatment the spectra of the solid show that this band has disappeared. On the contrary the characteristic band of the OH stretching of the COOH group (3300-2500) at 3228 (1st experiment) and at 3200 (2nd experiment) appears. The water hardness, due to Ca2+ and Mg2+ ions, is studied to verify the capability of the obtained resin to capture these cations. For this purpose, some mineral water is percolated through the micro-columns. There are three experimental evidences to validate the hypothesis: EDTA molecule (Ethylene Di-amino Tetra-Acetic acid, disodium salt) to estimate hardness is not required The pH of the percolated water through the column decreases from 8 of the mineral water without any treatment, to 6.3 after the treatment as expected The spectrum recorded in the visible range of the percolated mineral water through the column plus EBT (Eriochrome Black T) indicator is the same as the spectrum obtained using de-ionized water plus the same amount of EBT In conclusion, the study has provided evidence that it is possible to convert Plexiglas into cationic exchanging resin.

Interaction of the unsaturated sulfones with azinium ylides

1. Introduction In Japan the energy self-efficiency is very low: only 6%. Hydrogen (H2) has been expected as a new and alternative energy source to imported one, such as petroleum resources. Now hydrogen energy comes into the practical use in the field of the fuel cell. Hydrogen must be extracted from other sources, for example, water, fossil fuel, and so on. Hydrogen is obtained from water by using electronic or thermal or photo energy in most cases, whereas it is well-known that hydrogen is given by the oxidation reaction of silicon in alkaline aqueous solution: Si + 2OH- + H2O → SiO32- + 2H2 Free silicon (Si) is not only used in the steel refining, aluminum-casting in the field of fine chemical industries but also is used as a material in semiconductor electronics. However, a lot of used silicon is thrown away as a waste, being not reused and recycled. In this study we try to apply a waste silicon to obtain hydrogen based on the above reaction. The purpose of the study is to develop a safe and convenient manufacturing method to generate hydrogen for an energy source of the fuel cell.

新激發複合體的設計與應用

激發複合體 (Exciplex) 是由電子予體 (Donor)和電子受體 (Acceptor)在激發態時所生成具TADF 特性的過渡狀態物質,可用於製備高效能的第三代OLEDs。本研究以PVK 和自合 聚合物4 作為Donor,以3 種T2T 分子作為Acceptor,進行物理性混合後,挑出生成之exciplex的放光波長可與C545T 吸光波長搭配的組合,進行相關特性的鑑定分析與探討,以找出最佳exciplex 組合。接者,再以自行製備之exciplex 作為主體,加入C545T 作為發光體,評估兩者間的FRET 行為。目前已找出最佳的exciplex 組合與Donor 和Acceptor 的最佳混合比例且觀察到exciplex 和C545T 之間有FRET 行為,並已將exciplex 進一步製成元件,發現的確有發光的現象。雖然效率不高,但是會進一步去優化製程條件。期望研究成果將來能應用在第三代OLED 的改良,提供更多實際層面的運用。

First photochromic diarylethenes with cyclohexenone ethene "bridge"

Photochromism is determined as reversible transformation between two chemical species, induced by action of light [1]. Herewith, initial form and photoinduced isomer have different properties, first of all, spectral. The phenomenon is attractive for the design of hi-tech materials for different applications, including optical memory elements and molecular switches. Diarylethenes are the most promising class of organic photochromic compounds due to outstanding thermal stability of both isomers and high photostability [2, 3]. Photochromism of diarylethenes explained by reversible electrocyclic reaction of hexatriene system, provoked by UV light, back reaction is induced by visible light. In this work we have proposed a new class of photochromic diarylethenes with cyclohexenone ethene “bridge” 4. The key stage of the synthesis is “one-pot” reaction of ketoesters 1 and chalkones 2 in ethanol in the presence of sodium ethoxide that includes Michael reaction and subsequent intramolecular condensation of the resulting product. The final decarboxylation of semi-product 3 results in target diarylethenes 4. We have prepared a wide range of photochromic diarylethenes with thiophene, oxazole, imidazole and benzene derivatives as aryl moieties. The spectral characteristics of compounds obtained have also been discussed.

利用硫醇分子合成之金銅奈米團簇偵測過氧化氫及葡萄糖

本研究的方向是利用聚苯乙烯磺酸鈣(PSS)、硫醇小分子(PA)、銅離子(Cu2+)和金離子(Au3+)於最佳比例下合成的穩定金銅奈米團簇,分析此穩定、具有響應性之金銅奈米團簇並探討此系統用於過氧化氫以及葡萄糖偵測的效果,確認最佳合成比例(也就是改變PA、Cu2+、Au3+的比例)、分析特性(螢光強度、奈米團簇大小、團簇溶液分散性、有無加入PSS之影響)後,探討偵測待分析物的效果。以葡萄糖為例,加入葡萄糖氧化酶後,製造出葡萄糖酸及過氧化氫,就能藉由過氧化氫改變團簇表面特性,使螢光強度減弱來進行間接偵測葡萄糖濃度。最後藉由此金銅奈米團簇做為偵測試劑於真實樣品中進行過氧化氫與葡萄糖之偵測並探討其效果。

高分子包覆之牛血清白蛋白/穀胱甘肽金屬奈米螢光團簇及葡萄糖氧化酶複合材料於葡萄糖檢測與應用

本研究使用牛血清白蛋白(BSA)、穀胱甘肽(GSH)、金屬離子合成金屬奈米螢光團簇,並以正電高分子包覆金屬奈米螢光團簇及葡萄糖氧化酶(GOx)形成複合材料。此複合材料中的葡萄糖氧化酶與葡萄糖反應,製造出過氧化氫,以過氧化氫改變金屬奈米螢光團簇表面特性,使螢光強度減弱,間接偵測葡萄糖濃度。 本研究探討出合成金屬奈米螢光團簇之最佳條件——以穀胱甘肽輔助之牛血清白蛋白金奈米團簇(BSA/GSH-Au NCs)可產生最佳螢光效果,並分析出金屬奈米螢光團簇之螢光淬滅效果與葡萄糖濃度成對數函數,其檢量線之相關係數為0.994,且金奈米團簇在血液中對葡萄糖具有專一性,可穩定進行血糖檢測。另外,本研究找出最適當的正電高分子殼聚醣(chitosan)及其最佳包覆濃度0.05%,用於包覆金屬奈米螢光團簇及葡萄糖氧化酶。最後以殼聚醣包覆之牛血清白蛋白∕榖胱甘肽金屬奈米螢光團簇及葡萄糖氧化酶複合材料(BSA/GSH-Au NCs / GOx @ chitosan)進行葡萄糖檢測,其螢光強度變化量與葡萄糖濃度之對數檢量線相關係數為0.971。本研究開發出一套靈敏、快速、穩定的葡萄糖檢測材料,並期待未來能運用於實際的人體血糖檢測上。

自組裝紅色螢光有機分子之合成與其奈米微結構之操控

高科技產業的發展日新月異,創造不同特性的功能材料常扮演推進科技的關鍵角色,若單一材料能以簡易的方式進行奈米尺度下的結構轉換,便可能增加該材料的應用彈性。本研究設計並合成具放紅色螢光性質的雙尿素共軛分子TPDF-Bisurea,並將其引進多孔性陽極氧化鋁(AAO)模板,透過分子兩側雙尿素基團交互辨識,在模板內自組裝形成奈米管。再將奈米管置入充滿THF蒸汽的密閉環境,藉蒸汽微擾分子間作用力,使其由一維管狀轉為零維球狀結構,達到以自組裝行為在分子不同維度間轉換之目的。分析實驗所得的一維與零維奈米材料之基本及光物理性質,期望將兩者應用在光電元件中。其中空結構之特點亦可作為輸送藥物或基因的載體,並藉由螢光性質追蹤其進入目標體後的所在位置。

一步合成碳奈米複合材料與奈米碳管應用於超級電容電極修飾

本研究以高溫鍛燒的褐藻酸鈉鹽與亞硫酸銨混合粉末作為電極修飾材料,並與多層奈米碳管(CNT)混合後,附著於碳紙極電板上。修飾材料中推測含有碳奈米纖維與碳量子點,其表面具親水性的含氧官能基,可提高CNT在水相中的分散性;而碳奈米纖維則推測可增加材料的機械強度,提升電極可撓度。研究藉由調整鍛燒溫度和氮材合成比例,探討不同變因下製造的電極修飾材料對電容效能的影響。 得知最佳鍛燒條件為:褐藻酸鈉鹽與亞硫酸銨1:1(重量比)、鍛燒溫度為160℃。利用此條件下製作出來的電極修飾材料,可以使實驗材料達到最高的比電容值324F/g。此製程大幅提升了奈米碳管的比電容值(對照組128F/g),期待未來能實際運用於電能儲存裝置上,或搭配電池應用於可撓式電子裝置。