全國中小學科展

化學

Reactivity of styrylmalonates as synthetic equivalents of Donor–acceptor cyclopropanes with aldehydes in the presence of BF3•Et2O

Donor–acceptor cyclopropanes (DACs), which can act as sources of 1,2- and 1,3-zwitterions in the presence of Lewis acids, are widely used in organic synthesis for the preparation of various carbo- and heterocyclic compounds, including natural compounds and their analogues. To date, many types of DACs reactivity have been identified. However, the chemistry of styrylmalonates (isomers of DACs, which can be easily generated from DACs) is almost undescribed and has a powerful synthetic potential. The use of styrylmalonates as synthetic equivalents of DACs allows us cardinally change the known reaction pathways of DACs. In this work, a new strategy for cascade assembly of substituted pyrenes based on the reactions of styrylmalonates with aldehydes in the presence of BF3•Et2O has been developed. Generation of formal 1,2-zwitterionic intermediates owing to complexation of dicarboxylate groups with BF3•Et2O is the driving force of the reaction discovered. This method makes it possible to assemble pyrenes or 5,6-dihydro-2H-pyran-2-ones in one synthetic stage from readily available starting compounds with high regio- and diastereoselectivity, and use these pyrenes in futher reactions. We’ve optimized conditions of the reaction and synthesized a number of various substituted pyrenes. Moreover, the reaction shows good results with various aromatic and heteroaromatic substituents. Pyrenes can be easily purified by crystallization. Every product was obtained selectively and determined by full set of physical-chemical methods, including X-ray analysis. 5,6-dihydro-2H-pyran-2-one skeleton is found in various natural compounds demonstrating a broad spectrum of biological activity, such as antiviral and antineoplastic.

新激發複合體的設計與應用

激發複合體 (Exciplex) 是由電子予體 (Donor)和電子受體 (Acceptor)在激發態時所生成具TADF 特性的過渡狀態物質,可用於製備高效能的第三代OLEDs。本研究以PVK 和自合 聚合物4 作為Donor,以3 種T2T 分子作為Acceptor,進行物理性混合後,挑出生成之exciplex的放光波長可與C545T 吸光波長搭配的組合,進行相關特性的鑑定分析與探討,以找出最佳exciplex 組合。接者,再以自行製備之exciplex 作為主體,加入C545T 作為發光體,評估兩者間的FRET 行為。目前已找出最佳的exciplex 組合與Donor 和Acceptor 的最佳混合比例且觀察到exciplex 和C545T 之間有FRET 行為,並已將exciplex 進一步製成元件,發現的確有發光的現象。雖然效率不高,但是會進一步去優化製程條件。期望研究成果將來能應用在第三代OLED 的改良,提供更多實際層面的運用。

Interaction of the unsaturated sulfones with azinium ylides

1. Introduction In Japan the energy self-efficiency is very low: only 6%. Hydrogen (H2) has been expected as a new and alternative energy source to imported one, such as petroleum resources. Now hydrogen energy comes into the practical use in the field of the fuel cell. Hydrogen must be extracted from other sources, for example, water, fossil fuel, and so on. Hydrogen is obtained from water by using electronic or thermal or photo energy in most cases, whereas it is well-known that hydrogen is given by the oxidation reaction of silicon in alkaline aqueous solution: Si + 2OH- + H2O → SiO32- + 2H2 Free silicon (Si) is not only used in the steel refining, aluminum-casting in the field of fine chemical industries but also is used as a material in semiconductor electronics. However, a lot of used silicon is thrown away as a waste, being not reused and recycled. In this study we try to apply a waste silicon to obtain hydrogen based on the above reaction. The purpose of the study is to develop a safe and convenient manufacturing method to generate hydrogen for an energy source of the fuel cell.

Plexiglas: from synthetic glass to cationic exchanging resin

Plexiglas is a macromolecule (poly-methyl-methacrylate) obtained by polymerization of the Methyl Methacrylate. Cation exchanging resins have acidic groups such as COOH (carboxyl) and SO3H (sulfonic) which fix metallic cations dissolved in water releasing an equivalent of protons through the following reaction: 2 RCOOH + Me2+ (RCOO)2Me + 2 H+ Regeneration is made treating the exhausted resin with diluted hydrochloric acid (HCl) which moves the equilibrium to the left. The aim of our research is to re-use the discarded Plexiglas by transforming it into a cationic exchanging resin. Alkaline hydrolysis transforms the COOCH3 group into COO– group; the obtained group is then transformed into COOH group by means of a treatment with HCl. After the alkaline hydrolysis spectra of the solid show the characteristic band of the asymmetric stretching of the COO– (1610-1550) at 1567 (1st experiment) and at 1555 (2nd experiment). Instead after the acidic treatment the spectra of the solid show that this band has disappeared. On the contrary the characteristic band of the OH stretching of the COOH group (3300-2500) at 3228 (1st experiment) and at 3200 (2nd experiment) appears. The water hardness, due to Ca2+ and Mg2+ ions, is studied to verify the capability of the obtained resin to capture these cations. For this purpose, some mineral water is percolated through the micro-columns. There are three experimental evidences to validate the hypothesis: EDTA molecule (Ethylene Di-amino Tetra-Acetic acid, disodium salt) to estimate hardness is not required The pH of the percolated water through the column decreases from 8 of the mineral water without any treatment, to 6.3 after the treatment as expected The spectrum recorded in the visible range of the percolated mineral water through the column plus EBT (Eriochrome Black T) indicator is the same as the spectrum obtained using de-ionized water plus the same amount of EBT In conclusion, the study has provided evidence that it is possible to convert Plexiglas into cationic exchanging resin.

利用硫醇分子合成之金銅奈米團簇偵測過氧化氫及葡萄糖

本研究的方向是利用聚苯乙烯磺酸鈣(PSS)、硫醇小分子(PA)、銅離子(Cu2+)和金離子(Au3+)於最佳比例下合成的穩定金銅奈米團簇,分析此穩定、具有響應性之金銅奈米團簇並探討此系統用於過氧化氫以及葡萄糖偵測的效果,確認最佳合成比例(也就是改變PA、Cu2+、Au3+的比例)、分析特性(螢光強度、奈米團簇大小、團簇溶液分散性、有無加入PSS之影響)後,探討偵測待分析物的效果。以葡萄糖為例,加入葡萄糖氧化酶後,製造出葡萄糖酸及過氧化氫,就能藉由過氧化氫改變團簇表面特性,使螢光強度減弱來進行間接偵測葡萄糖濃度。最後藉由此金銅奈米團簇做為偵測試劑於真實樣品中進行過氧化氫與葡萄糖之偵測並探討其效果。

高分子包覆之牛血清白蛋白/穀胱甘肽金屬奈米螢光團簇及葡萄糖氧化酶複合材料於葡萄糖檢測與應用

本研究使用牛血清白蛋白(BSA)、穀胱甘肽(GSH)、金屬離子合成金屬奈米螢光團簇,並以正電高分子包覆金屬奈米螢光團簇及葡萄糖氧化酶(GOx)形成複合材料。此複合材料中的葡萄糖氧化酶與葡萄糖反應,製造出過氧化氫,以過氧化氫改變金屬奈米螢光團簇表面特性,使螢光強度減弱,間接偵測葡萄糖濃度。 本研究探討出合成金屬奈米螢光團簇之最佳條件——以穀胱甘肽輔助之牛血清白蛋白金奈米團簇(BSA/GSH-Au NCs)可產生最佳螢光效果,並分析出金屬奈米螢光團簇之螢光淬滅效果與葡萄糖濃度成對數函數,其檢量線之相關係數為0.994,且金奈米團簇在血液中對葡萄糖具有專一性,可穩定進行血糖檢測。另外,本研究找出最適當的正電高分子殼聚醣(chitosan)及其最佳包覆濃度0.05%,用於包覆金屬奈米螢光團簇及葡萄糖氧化酶。最後以殼聚醣包覆之牛血清白蛋白∕榖胱甘肽金屬奈米螢光團簇及葡萄糖氧化酶複合材料(BSA/GSH-Au NCs / GOx @ chitosan)進行葡萄糖檢測,其螢光強度變化量與葡萄糖濃度之對數檢量線相關係數為0.971。本研究開發出一套靈敏、快速、穩定的葡萄糖檢測材料,並期待未來能運用於實際的人體血糖檢測上。

一步合成碳奈米複合材料與奈米碳管應用於超級電容電極修飾

本研究以高溫鍛燒的褐藻酸鈉鹽與亞硫酸銨混合粉末作為電極修飾材料,並與多層奈米碳管(CNT)混合後,附著於碳紙極電板上。修飾材料中推測含有碳奈米纖維與碳量子點,其表面具親水性的含氧官能基,可提高CNT在水相中的分散性;而碳奈米纖維則推測可增加材料的機械強度,提升電極可撓度。研究藉由調整鍛燒溫度和氮材合成比例,探討不同變因下製造的電極修飾材料對電容效能的影響。 得知最佳鍛燒條件為:褐藻酸鈉鹽與亞硫酸銨1:1(重量比)、鍛燒溫度為160℃。利用此條件下製作出來的電極修飾材料,可以使實驗材料達到最高的比電容值324F/g。此製程大幅提升了奈米碳管的比電容值(對照組128F/g),期待未來能實際運用於電能儲存裝置上,或搭配電池應用於可撓式電子裝置。

以螢光探針作為過氧化氫與漂白水之微量檢測

本研究以順式二苯乙烯螺旋芴雙極型衍生物(STIF)為模板與帶有推電子基團的雙芳香胺及硼酯合成出本計畫所用螢光檢測劑。檢測劑與過氧化氫和漂白水發生氧化反應,利用螢光光譜儀可測量反應前後產生的藍位移大小。為提高檢測劑的偵測能力,嘗試替換雙芳香胺結構中的推電子基,並比較不同推電子基檢測劑反應變化的差異,以期能發展出更簡便的過氧化氫和漂白水的檢測方法。由於食品、用品加工常用到過氧化氫和漂白水,處理不當所導致的殘留以致慢性中毒的事件屢見不鮮,根據我國法律規定1,可用於製程但最終產品(食品)不得檢驗出任何劑量殘留,故此檢測劑同時具備了實際用途。

合成三唑(Triazole)之超分子凝膠並討論其凝膠形成機制

我們成功利用點擊化學(Click Chemistry)合成出C1、C2、C3三個含有三唑(triazole)的化合物,三者的共同特色是具有對稱特性的超分子結構,C2、C3會自組裝成網狀結構並與有機溶劑形成超分子有機凝膠;經由實驗我們以成膠能力最佳的C3作為後續實驗主要研究對象。我們研究的內容包含基本物化性以及周圍環境對凝膠形成的影響,發現溫度、溶劑、濃度都會影響其聚集形貌。而我們對其分子間的作用力進行研究,得知主要以π-π堆疊、氫鍵及凡得瓦力等非共價鍵作用力維繫分子的結構。另外我們發現C3分子在凝膠態與薄膜態放光增強的效應,推測此分子具有AIE 效應(聚集誘發螢光增強)。最後,我們根據實驗結果,推導出C3分子形成凝膠的機制。

Findings of new oscillations in BR reaction

The Briggs Rauscher reaction, i. e., BR reaction, which is one of the oscillation reactions, produces iodide ion and iodine repeatedly. Continual color changes of the solution from colorless to deep blue, and vice versa, are observed during the reaction due to the so-called “iodine test” reaction. In this work, we studied the effects of the presence of the redox active indicators on the oscillation behavior of the BR reaction. To the reaction mixture of KIO3, H2SO4, H2O2, C3H4O4, MnSO4, and starch, which are used for the general BR reaction as added a redox active reagent (indicator). Then, the changes in color and voltage of the reaction solution were recorded by a photosensor of the LEGO MINDSTORMS and a voltmeter using Pt electrodes. Under general reaction conditions, the oscillation reaction continued for ca. 5 minutes, including 18 times of oscillations. When an indicator, such as BTB, was added instead of starch to the reaction solution, splits of the voltage wave were observed, which should be a kind of new oscillation. Moreover, we found that the addition of K3[Fe(CN)6], which exhibits high redox activity, in the reaction solution instead of starch made the life-time and the numbers of the oscillation in the reaction greater by 3 times (14 min.) in time and more than 4 times (81 times) in the frequency. It’s also a kind of new oscillation. These results suggested that the oxidation-reduction reactions by the addition of ferricyanate ion effectively promotes the redox process of iodine and iodide ion. The experiments we wrote above were conducted without starch. Thus, as a reference, we conducted the same experiments under the presence of starch and got interesting results. We also studied the effects of K4[Fe(CN)6], suggeting that not only redox reaction between ferricyanide and ferrocyanide ion, but also the redox reaction with BR solution should occur in these reactions.