全國中小學科展

化學

量子點敏化光電水分解產氫

為了解決能源不足及造成環境污染等問題,各國積極開發綠色能源 ,其中以太陽能最具發展潛力,本實驗是以二氧化鈦做為光觸媒,來進行光電轉換,進而擴增其所吸收的可見光範圍,使產氫的速率提高。此實驗共分成四個步驟,分別為FTO的處理及清洗、長二氧化鈦奈米柱、吸附上硫化鉛、及覆上硫化鋅保護層,接著便可利用電化學分析儀分析其所產生的電流密度為何並繪製成圖表,由實驗結果可以發現,二氧化鈦奈米柱確實能達到光電轉換,且若使用硫化鉛改變其顏色與性質,可使轉換效率大為提升,證明了此項材料確實提高了光電水產氫效率。

多層元件含末端雙鍵官能基的電洞傳輸應用於OLED

使用濕式製程在製備多層元件時,最大的困難是如何避免前一層的薄膜被後一層的溶液溶解。本研究合成末端具有雙鍵且可熱交聯之材料(FTV),經熱處理後形成具有溶劑阻抗性之網狀結構,再塗佈發光層做多層元件,使得製程上較簡易,成本也較便宜,較於傳統製備多層元件需以蒸鍍方式來製作,濕式製程是更為方便。 FTV作為電洞傳輸層,元件結構為ITO/PEDOT:PSS/ FTV/PF/LiF(0.5 nm)/Ca(50 nm)/Al(100 nm),製備為濕式製成的多層元件。並且嘗試不同濃度和轉速尋找電洞傳輸層FTV的最適化條件。本次實驗找出濃度為0.25%,轉速3000 rpm條件最佳,亮度和效率分別為2625cd/m2 and 0.17cd/A,效果遠高於沒有添加電洞傳輸層FTV的元件(795 cd/m2,0.04 cd/A),為重要發現。 

不同形態之銀奈米結構及銅銀雙金屬對電催化二氧化碳還原產物的研究

近年來全球暖化與能源危機成為眾人關心的議題,將太陽能轉換成電能並電解還原二氧化碳,生成運用於替代能源的產物,可同時解決兩個議題。本研究以水熱反應製備銅奈米線,以無電電鍍將銀鍍上銅奈米線,並以油浴反應、改變硝酸銀與聚乙烯吡咯烷酮的莫耳數比,合成銀奈米材料。塗布至玻璃碳盤電極後,以穿隧式電子顯微鏡、紫外光-可見光光譜儀、X射線繞射儀鑑定、以氣相質譜層析儀分析其電催化還原二氧化碳之產物與法拉第效率,發現產氫之法拉第效率以奈米銀立方電極 ,在電壓為-0.65 V至 -0.7 V時最高;產一氧化碳之法拉第效率以銀奈米粒,在電壓約為 -1.1 V時最高。銀奈米電極可以產熱值高的氫氣以及可進行多種反應、作為工業原料的一氧化碳,而銅鍍銀之奈米線電解之產物多元,包括碳氫化合物、一氧化碳、甲醇、乙醇等。

球狀銀奈米粒子結合金屬離子所誘導出之仿生物酵素活性與其應用

近年來新的仿生物酵素奈米材料,尤其是雙金屬奈米粒子或混合奈米材料如許多貴金屬奈米粒子,包括金鉍、金鉑、金汞、金鉛、銀金和銀鉑雙金屬合金奈米粒子表現出高的催化活性。金奈米粒子的仿生物酵素活性(氧化酶、過氧化酶和過氧化氫酶)可以經由與不同的金屬離子反應進行調整,例如金奈米粒子分別加入鉍離子、銀離子和汞離子後,在粒子表面分別會形成金鉍、金銀和金汞奈米層,表現出過氧化酶、氧化酶以及過氧化氫酶活性。 本研究藉由加入不同金屬離子誘導出13 nm球狀銀奈米粒子的仿生物酵素活性(氧化酶、過氧化酶)。銀奈米粒子與金離子於pH 9.0的環境中反應後會誘導出氧化酶活性。銀奈米粒子和鉍離子於pH 9.0的環境中反應後會誘導出過氧化酶活性。我們用葡萄糖氧化酶作為模型酶催化葡萄糖以產生過氧化氫 (H2O2),其與Amplex red(AR)在鉍/銀奈米粒子催化劑存在下反應形成螢光產物。由於AR產物-試鹵靈的螢光強度與葡萄糖濃度呈正比。未來期望能將金/銀奈米粒子用於抑菌實驗,鉍/銀奈米粒子結合葡萄糖氧化酶可用於血糖偵測。

氧化亞銅奈米複合材料於非酵素型葡萄糖感測器之應用

本研究的方向是以利用抗壞血酸還原銅離子合成之氧化亞銅奈米立方體為基礎,進一步修飾上金屬以加強其氧化活性,並探討其用於葡萄糖檢測的效果。本研究中將藉由修飾不同的貴金屬於氧化亞銅奈米立方體,尋找不同變因下製備出的氧化亞銅奈米複合材料對催化效能的影響,透過循環伏安法及穿透式電子顯微鏡,以找出具有最高葡萄糖催化活性能力的反應條件。最後藉由此最佳化的奈米複合材料做為非酵素型葡萄糖感測器並探討其效果。

金屬奈米粒子/還原氧化石墨烯於直接甲醇燃料電池之應用

本研究的方向是以還原氧化石墨烯(RGO)為基礎,利用本材料具有優異的電子傳導以及高比表面積之特性,可成為燃料電池的優良電極觸媒材料。再進一步修飾上金屬奈米粒子以加強其電化學催化活性,並探討其用於甲醇氧化反應的效果。 本研究中藉由調整金屬奈米粒子成長的時間、反應溫度和與RGO的合成比例,探討改變不同變因下製備出的金屬奈米粒子/還原氧化石墨烯材料對催化效能的影響。最後藉由此最佳化的奈米複合材料做為直接甲醇燃料電池的陽極催化劑並探討其催化效果。

New approach to the synthesis of functionalized fluoroalkenes

Fluorine has a big influence on physical, chemical and biological properties of organic structures. Organofluorine compounds are widely used in modern medical chemistry to develop new drugs. Insertion of fluorine atom into organic molecules can improve their reactivity in biological systems, increase their metabolic stability, lipophilicity and permeability through membranes. As a consequence, in recent years, the percentage of drugs containing one or more fluorine atoms has increased rapidly up to 40%. The fluoroallylic fragment is also able to change properties of bioactive molecules. Its introduction into such structures as inhibitors of histonedeacetylase, inhibitors of matrix metalloproteinase, asparagine, glutamine, etc. increases their biological activity and electronic properties. We propose a new method for the synthesis of functionalized fluoroalkenes, based on the generation of fluoroallyl nucleophiles from silyl- and boronyl-substituted fluorocyclopropanes and their further usage in the allylation of carbonyl compounds or their derivatives. Due to the fact that the cyclopropanation of alkenyl boronates is not possible under conditions of alkaline dehydrohalogenation of dibromofluoromethane, we have developed a new method for the preparation of silyl- and boronyl-substituted cyclopropanes, which consist of carbene cyclopropanation of multiple C=C bonds by sodium dibromofluoroacetate catalyzed by (IPr)AgCl. The new method is effective for the cyclopropanation of not only boronyl- and silyl-substituted olefins, but also for low-reactivity alkenes, such as monoalkyl substituted alkenes, allyl alcohol ethers and α,β-unsaturated carbonyl compounds. The conditions for isomerization of silyl- and boronyl-substituted fluorohalocyclopropanes in the presence of catalytic amounts of copper (I) bromide in acetonitrile was selected. It was shown that the regioselectivity of the process is determined by the thermodynamic control. Thus, the formation of fluorovinylsilanes or fluorovinylboranes in the isomerization of α-silyl- or α-boronyl-gem-bromofluorophenylcyclopropanes and fluoroallylsilanes upon isomerization of β-silyl-gem-bromofluorophenylcyclopropanes was observed. Thus, new types of fluorinated reagents were obtained that are not previously described in the literature (...)

Light as energy source in chemical reaction. New synthesis of valuable dithienylacetylenes

Photochromism (from Greek φωζ photo “light” and χρωμα chroma “colour”) is determined as reversible transformation between two chemical species, induced by action of light [1]. Herewith, initial form and photoinduced isomer have different physical and chemical properties. The phenomenon is attractive for the design of hi-tech materials, including optical memory elements and molecular switches. Diarylethenes is the most promising class of organic photochromic compounds due to outstanding thermal stability of both isomers and high photostability [2]. The size of so-called ethene bridge significantly affects the photochromic reaction. The photochromic diarylethenes with 4-, 5-, and 6-membered cyclic ethene bridge are known, but there is no example with 3-membered bridge. In this study we report a new approach towards dithienylacetylenes 3 that include the synthesis of diarylcyclopropenones 2 via Friedel-Crafts alkylation of heterocyclic compounds 1 with tetrachlorocyclopropene and following UV-irradiation. It was found that the diarylethenes 2 do not display photochromic properties, but they undergo quantitative photoelimination of carbon monoxide upon UV-irradiation resulting in dithienylacetylene 3. Thus, we have proposed a new synthetic two-step approach to dithienylacetylenes 3 [3], which could be useful synthons in synthesis of photochromic diarylethenes with various ethene bridges.

Studies of Hydrogen Evolution Reactions from Aluminum Foil using Waste Materials and Their Reaction Mechanism

Nowadays, the most of waste materials are incinerated and generated the toxic gases in 日本. On the other hand, the Hydrogen gas (H2) has attracted attention as clean energy due to no emissions of toxic gases. In this work, we investigated that the new hydrogen evolution system using waste materials, such as aluminum (Al) foil and lime desiccant, and also investigated their reaction mechanism. The grinded desiccant was added to Erlenmeyer flask containing 300 mL of water. After dissolution the desiccant, the Al foil was added to the solution to begin the reaction. Generated gas was determined by water displacement method. The gas components are identified by gas chromatography. We found that the waste material reaction combined with waste lime desiccant and Al foil could be used for one of the hydrogen evolution system. This reaction is depended on solubility of lime desiccant, thus mean solubility of CaO in water. The Al foil is reacted with the desiccant more than 20 times of reaction stoichiometry. The calcium ion or calcium complex ions are involved with the excess reaction of Al foil.

吸收紫外光之透明有機薄膜太陽能電池

透明有機薄膜太陽能電池,有別於目前市售深藍黑色太陽能板,因其吸光範圍在不可見光區,使其外觀呈透明無色。若發展得當,便可應用在日常生活中,將玻璃更換為透明有機薄膜太陽能電池,廣泛利用再生能源。 本研究中,我們以旋環雙芴為主體,分別引入二苯環胺基、1,3,4-噁二唑雜環,合成 D2、A2分子作為透明有機薄膜太陽能電池的主動層。測量其溶液態的基本性質後,發現 D2、A2的吸收波長皆落在紫外光區。作為有機太陽能電池元件的主動層,不論是 D2 和 C60 搭配,或是 D2 和 A2 搭配,皆具有極佳的穿透度,並且太陽光下光電轉換效率最高可達0.52 %,弱光下的光電轉換效率可高達15.6 %。