Tamarind(Tamaridus Indical.)Seed Coat Extracts As Coconut Oil Antioxidant
After short period of storage the coconut oil at room temperature we found that it becomes rancid. The oxidizing flavor is disgusting and causes economic loss. Some chemicals are used to prevent the oxidation of coconut oil but they are expensive and may be harmful to consumer’s health if used daily. Moreover, they are not suitable for homemade coconut oil and residual waste from the process may be environmental toxic. The present work thus aims at extracting substances from local plants and used as antioxidant for coconut oil. Seven kinds of local Caesalpiniaceae plants in Eastern Thailand namely Tamarind (Tamaridus indica L.), Peacock flower Caesalpinia pulcherrima L.), Flame tree (Delonix regia L.), Golden shower (Cassia fistula L.), Siamese cassia (C. siamea Lamk.), Candelabra bush (C. occidentalis L.), and Copper pod (Peltophorum pterocarpum DC.) were used. Ten grams of seed coats were mixed with 50 ml of the distilled water and 95% Ethyl alcohol (1:1) mixture in a closed container. The mixture was heated in a water-bath at 60 ℃ for about 2 hrs. and then kept in 10 ℃ icebox about 2 hrs. The mixture was then filtered and the filtrate was heated in an hot-air oven at 80 ℃ for about ? hrs. Ten ml of coconut oil was added with 0.5g of the extracts and kept at room temperature for 5 days. The pH and peroxide value (using the Iodometric titration method) of the oil were measured. It was found that the coconut oil with the Tamarind seed extract had the lowest peroxide value and was selected. Next the suitable amount of the Tamarind extract was studied by adding the extract to 10 ml coconut oil at 0-7% (w/v) and the contents were kept at room temperature for 5 days. The result showed that the 3% (and more over) Tamarind extract had the lowest peroxide value. Then the coconut oil with 3% Tamarind extract was kept at room temperature for 30 days. The pH and peroxide value were measured every 5 days. It was found that the oil could be stored for 25 days without significant change in pH and its peroxide value was less than 10 milliequivale n t oxygen per kilogram oil according to FAO/WHO (Codex) standard .Therefore, Tamarind seed coat at 3% could be used to retard the coconut oil oxidation for 25 days. This work presents the applicable use of plentiful local plants such as Tamarind seed, which is normally discarded, as an antioxidant for coconut oil.
新穎光子晶體材料的研究與開發
本研究目的1.探討催化劑對光子晶體SiO? 合成的影響,依據催化劑對光子晶體製作的數據,統整歸納出不同濃度的氨水催化劑對於SiO? 的吸收光譜與粒徑大小等性質的影響。2.尋找簡易的方式進行光通道的製作。 採用溶膠凝膠法將tetraethylorthosilicate(TEOS) 以氨水做催化劑在乙醇溶液中的水解及縮合反應製作單分散SiO?粉體。 嘗試將細線附著在玻片上進行排列,排列完成後將細線拉起企圖製造一條溝道。 實驗結果,催化劑會影響合成SiO? 的顆粒大小,隨著催化劑濃度增加,顆粒大小也隨之增加。使用細線可成功製造出凹陷的孔道,但目前採用之線仍嫌太粗,欲尋找奈米線材加以取代以製造出更適用之光通道。 ;The purpose of this research is 1.to find out the influence of the catalyst on compounding silica photonic crystals . According to datum , I can generalize the connection between the consistency of catalyst and the particle size of photonic crystal. 2.to find easier method of making the passage of light. I used tetraethylorthosilicate (TEOS) as a reactant and ammonia as the catalyst to react hydrolysis ,water condensation and alcohol condensation in ethanol. I tried to put fine lines on sheet glasses. After the arrangement of the silica particles, I took apart the lines attempting to make sunken ditches. The outcome of this ecperiment show that partical size increases with the consistency of catalyst. We can use fine lines to make the sunken ditches, but the line is not fine enough that I should find much finer lines to make it.
ORGANIC AND NON ORGANIC CEREALS The experimental pattern that marks the difference
1. Purpose of the research The purpose of this research is to make a suitable experimental pattern to distinguish, by scientific method, organic cereals from non organic cereals. The reference ideas consider cereals (rice, barley and maize) as a complex system that possesses its own chemical–physical properties. These cereals are able to maintain traces of the cultivation process. In non organic cereal grains foreign molecules, from synthesis substances used during their cultivation and/or in their final processing, can be found. These kinds of molecules would be absent in organic cereals. The effect of these foreign molecules traces on the principal components (glucides, proteins, lipids) of cereals is investigated by Infrared Spectroscopy (IR). 2. Procedures The spectra of a small quantity of cereal meal are recorded by the ATR (Attenuated Total Reflectance) sampling method. The meal is obtained from selected grains of rice and barley, that are grated near the germ. On the contrary, the maize grains, are cut lengthwise and the two halves are grated on the interior surface. This procedure of preparing samples, withdraws that part of the non organic cereal grains where foreign molecules are more abundant. The meal mass amounts to only a few milligrams; so in this way the dilution effect caused by starchy and proteinic parts onto the lipid part, is reduced. The cereal packaging has to be intact, well preserved and the expiry date has to be far–off. The organic packaging has the European Certification symbol and that of the authorizing agency. The cereals used in this research, have been labelled with symbols. The experimental data are processed by the NMC (Nearest Means Classification: J.Chem. Educ. 2003, 80, 542) method, adapted to cereals. 3. Data The NMC method is based on the individuation of suitable absorption bands of the IR spectrum and, for each of them, the calculation of the following quantities: the average value of the wave number (); the (Σ) value; the |diff.|=|(ῡ–)| value and the Σ|diff.| value. At the end the sum of the Σ|diff.| for all selected bands is computed in order to obtain the Σ(Σ|diff.|). Then a graph is plotted using (Σ) and Σ(Σ|diff.|) variables. The graph has a gap between the organic cereals and the non organic ones; in other words the organic cereals are found in a particular area, whilst the non organic cereals are found in another area. The boundary between the two areas is a particular value of the Σ(Σ|diff.|). This is the pattern that distinguishes organic cereals from non organic ones. 4. Conclusions For some cereals, the gap is bigger than others; but in any case the position of the cereals on one side of the boundary line or on the other, is clear. An experimental scientific pattern that marks the difference between organic cereals and non organic ones, can be useful to organic farms, authorizing agencies and consumers. This research has planned a route to find such a pattern.
A Zero Pollution Process That Convert Non-Biodegradable Plastic Waste Into Hydrocarbon Fuel
Non-biodegradable waste materials like discarded polybags, rubber bottles, broken buckets and sachet water bags constitute a serious environmental problem all over the world. Several steps have been taken to eliminate these waste materials. Burning of these non-biodegradable waste in an incineration only constitute environmental pollution as poisonous gases are release to the environment which are hazardous to lives. The purpose of developing this catalytic conversion of non-biodegradable waste material into fuel is to remove the problem non-biodegradable waste materials poses in its disposal as well as obtaining a precious end product that will supplement fuel supply. Dump side lands that would have been used for dumping waste is also reclaimed. The procedure and chemistry is from the fact that Non-biodegradable waste materials are composes of long chain hydrocarbon. Some are made of polymeric units like polythene. The materials are heated in a closed vessel with coal and a catalyst. Heating is done progressively until condensate from gaseous product is obtained. This condensate is wide range of liquid fuel (Diesel and petrol) including LPG ranges. Further separation processing will give pure product of the different fuel liquids. The Apparatus consist of a cylindrical cooking vessel heated by coal furnace or other heat source like LPG, the vessel is made of steal. The upper side of the vessel provide an outlet vent to connect condensing section/condenser which is required for the conversion of gaseous form of product into liquid state. The fuel produce can find it application in the following areas; Heating of kiln in the cement company, Heating of boilers and Domestic lighting.
討論顯微鏡下的化學反應
由於想了解化學反應的微觀形態,我們設計微型化學反應裝置來比較巨觀(傳統型)與微觀(創新型)化學反應間的差異,並探討其實用及環保方面的問題。在顯微鏡底下,我們觀察化學反應的沉澱結晶及電解反應,嘗試以各項變因(溫度、濃度、聲波…等)來觀察其結晶的型態。我們已成功地將實驗藥品用量減少到一滴(約0.04ml),並以微觀的角度觀察化學反應的過程。在實驗中,發現反應進行時,粒子會不斷流動,經查證後為愛因斯坦所提出的布朗運動,並且測得硫顆粒的直徑大小約4.2 ~ 6.7 微米。不同聲波所造成硫粒子的移動速率不同,而不同溫度的部份,我們發現→每增加十度硫粒子移動速率增加約兩倍。在面積4.392×10-4cm2 範圍內大約有250~300 顆硫沉澱的粒子。本實驗成功地將顯微鏡應用在化學領域上,若將此實驗推廣,可達到污染少、觀察實驗的時間短、用量少的目標。此實驗是邁向化學微觀世界,一種值得嘗試且創新的方法。In order to compare the differences between the chemical reactions of macroscopic reactor and microscopic reactor, we have designed a device of chemical reaction and researched into the problems of their environmental protections and practical aspects. Under the microscope, we observed not only their precipitating crystal compound from the chemical reaction and electrolytic reation but their types of crystal. We have successfully reduced the dose to one drop ( about 0.04ml) and observed the process of their chemical reaction from the angle of microscopic reactor. During performing the experiment, we found the particles would keep flowing while the reaction was working. It was proved as "Brown motion" introduced by Einstein. The diameter of these particles were around 4.2~6.7μm. We find that different sound waves and temperatures,the motion speeds are quite different. And the movement rate increases about two times as the sulfer particles increase 10℃ each time .Within the measure of area of 4.392×10-4cm2,there are 250~300 sulfer particles.The experiment has successfully used a microscope in the field of chemistry. If we popularize the experiment, we can reach the goal of less pollution, fewer the dose and time-saving observation. It’s an innovation to step to the world of chemical microscope world.
Effects of Transition Metal Ions on the Thermal Stability,Fire Retardant Properties and Rheological
A study was conducted to improve the thermal stability, fire retardant (FR)\r properties and rheological properties of ethy-lene vinyl acetate because of\r its growing use in commercial applications. The approach employed\r was to modify an organo-clay, Closite 20A (C20A), with transition metal\r ions (TMI). In this study eight transition metal salts were acquired for\r modification. It was observed that all TMI modified organoclay\r nanocomposites improved thermal stability through thermo-gravimetric\r analysis (TGA). Rheological testing was done using a parallel plate\r measuring system (PP MS) to determine the dependence of storage\r modulus and loss modulus of copper and iron modified organoclay\r nanocomposites relative to pure EVA 350. The process of gelation was\r also tested for by calculating the ratio between the loss modulus and the\r storage modulus. It was found that copper modified organoclay\r nanocomposites promoted gelation and thus decreased the fluidity of\r EVA 350. The intercalation of the TMI modified organoclays with the\r polymer matrix was determined by the use of small angle X-ray\r scattering (SAXS). Testing revealed that the intercalation was\r successful, further proving that the TMIs had improved thermal stability,\r FR properties and rheological properties,
綠色親善大使之誕生-生物可降解性奈米複合材料的研究
近年來,由於科技的進步,導致合成性高分子材料大量開發利用,雖然便利 了人們的生活,卻造成許多環保問題,例如:資源的消耗,以及對環境的污染。 然而「生物可降解人工合成的聚乳酸高分子」和「天然的幾丁聚醣高分子」均具 有優良的生物可相容性及生物可分解性,添加無機層狀蒙脫土可補強其機械性質 之不足。本實驗之目的是以生物可分解之合成性高分子聚乳酸作為主體,再和經 有機化改質後的蒙脫土摻混而製備出聚乳酸/蒙脫土之奈米複合材料。 本實驗主要分為三大部分: (一)以界面活性劑對蒙脫土進行改質 (二)製備聚乳酸/蒙脫土奈米複合材料試片 (三)對試片進行生物降解性測試 此外,本實驗以X-ray 繞射儀(XRD)檢測改質後蒙脫土層間距離的變化; 場發射電子顯微鏡(FE-SEM)觀察生物降解後複材之表面型態;膠體色層分析 儀(GPC)檢測生物分解前後複合材料之分子量的變化;DMA 檢測複合材料之 機械性質;TGA 檢測複合材料之熱穩定性Thanks to the development and advance of modern technology, the synthetic polymers have been put in wide use. Though the synthetic polymers provide convenience for our lives, they also bring about many environmental problems, such as consumption of natural resources and environmental pollution. Nevertheless, both biodegradable man-made PLA(Poly Lactic Acid)and natural chitosan contain good biocompatibility and biodegradability. Else, adding MMT(Montmorillonite)into PLA can modify the mechanical properties. Our experiment aimed to prepare the PLA (Poly Lactic Acid)/ Montmorillonite Nanocomposites by adding organo-modified MMT into the biodegradable PLA. The experiment underwent three phases:(1) modifying MMT by means of CTAB(n-Hexadecyl Trimethyl-ammonium Bromide, CTAB ) and chitosan (2)preparing PLA(Poly Lactic Acid)/ Montmorillonite Nanocomposites (3)testing the biodegradability of the Nanocomposites we prepared. While conducting the experiments, we made use of the XRD(X-ray Diffraction)to examine the change in MMT’s layer thickness. The SEM(Scanning Electron Microscope)was also employed to observe the surface pattern of the Nanocomposites, and used Gel Permeation Chromatography (GPC)to examine the decrease of the Nanocomposites’ molecular weight. Moreover, we also used Dynamic Mechanical Analysis (DMA)to test the mechanical properties of the Nanocomposites(Tensile testing). Last, we test the thermal stability of the Nanocomposites by using Thermogravimetric Analysis (TGA).