全國中小學科展

數學

M&m Sequences 之研究

本專題的目的是研究以任意實數 a1 、 a2 、 a3 為起始的M&m Sequences 之穩定性質。我們主要關心的問題是:(1) 是否任給定三數a1 、 a2 、 a3 為起始的M&m 數列皆會穩定?(2) 若上述的M&m 數列穩定,則其穩定的長度與a1 、 a2 、 a3的關係為何?(3) 其穩定的值與a1 、 a2 、 a3的關係為何?我們研究的主要步驟及結果如下︰1. 當1 2 3 a 1) 為起始的M&m 數列。3. 我們證明了下列性質:(1) 若M&m 數列中前n 項所成數列的中位數為n m ,則下式成立: (2) 當存在 k > 4 , k ? N ,使得 ?1 ?2 = k k m m 成立時,則此數列穩定,且穩定長度p 滿足:min{ | 4 } ?1 ?2 = > = k k p k k 且m m ,其中p 必為奇數。(3) { n m }為單調遞增且, 5 1 ? ? ? a m n n n4. 如果x ? 41.625,則{?x,1, x}為起始的M&m 數列,其對應的數列有相同的大小次序且此M&m 數列會穩定,穩定值為41.625,且穩定長度為73。5. 我們觀察發現:如果x 1). 3. We prove the following properties: (1) If the median of the former n numbers of the M&m sequence is n m , we obtain (2) There exist k > 4 , k ? N such that ?1 ?2 = k k m m , then the sequence is stable and the stable length min{ | 4 }?1 ?2 = > = k k p k k and m m , where p must be an odd number. (3) { n m } is monotone increasing and , 5 1 ? ? ? a m n n n . 4. Suppose x ? 41.625, then the all M&m Sequences beginning with –x , 1 , x are the same, and the sequences will be stable, the stable value is 41.625 and the stable length is 73. 5. By the computer experiments, we observe that if x is any positive real number less than 41.625, the M&m Sequence starting with –x, 1, x, will be also stable but does not appear to follow any clearly discernible pattern of behavior. However, the stable lengths are much variant and exist some unknown relation with point format of x. Moreover, we have the following properties: (1)If x is a node, then the stable value is x and the stable length equals to the index of median of the node + 2; (2)Near the branch of 41.625, the stable length is almost a constant except at the edge area,the stable length of (-x,1,x) as x around branch 1 is chaos; (3)If x near the node (K= 3, 5, 7, …, 67, 69), then the stable length is l(K)+K?1 where the positive integral l(K) is determined by Prop1 (see Table 6 and 7).

正多邊形三角剖分的探討

給定正n邊形,於內部區域新增對角線,使得對角線不交叉且內部區域皆為三角形,則將此圖形稱為正n邊形的一個『三角剖分』。考慮正n邊形的所有三角剖分,已知其數量為卡特蘭數Catalan(n-2)。在所有三角剖分的情形中,考慮旋轉與翻轉,將同構的情形視為相同,則將所有不同構的三角剖分總數記為Dn。本文對於正n邊形的不同構三角剖分進行研究,以三種面向進行探討,首先我們以不同構三角剖分的對稱性分類,發現其和化學式CnHn+2的同分異構物有相關性;再者,以相鄰三角形的最大數量進行分類,當相鄰三角形的最大數量為n-2、n-3、n-4與n-5時,得出不同構三角剖分的計算通式;最後,以三個相鄰頂點組成的外圍三角形進行分類,將『恰包含兩個外圍三角形的不同構三角剖分』、『圖論中的毛毛蟲圖(Caterpillar)』以及『化學結構相關的Losanitsch’s triangle』進行深入探討。

一個也沒漏掉,一個正有理數的排序的研究

本文中我們探討一個有趣的數列。這個數列有一個非常特殊的性質:將數列相鄰兩項的前項當分子,後項當分母,所產生的分數數列,恰好會出現所有的正有理數。 這個特殊的性質表示,可以將正有理數按照這個方式作排序,這個排序將完全不同於常見的正有理數排序的方法。 (1). 在正有理數的排序的結構中,我們做出許多有關於此數列的定理。 (2). 用數學歸納法證明此分數數列涵蓋所有正有理數,且每一正有理數只出現過一次。 (3). 將數列分割後,利用試算表製成數列規則表,並整理出快速的方法將數列表達出來。 (4). 將an 數列排成“樹"的模式,可更快速的把正有理數寫下來。 (5). 最後,設計出搜尋正有理數的演算法,解決在分數數列中第n個正有理數會是多少;以及正有理數會出現在數列中第幾項的問題。 Let’s discuss an interesting sequence. There is a very special quality in it. In this sequence, choose two numbers, which are close to each other, and suppose the first number as “member” while the second one as “denominator.” Then we can get a fraction sequence that includes all of the positive rational numbers! According to this special quality, we can arrange positive rational numbers by the following method. Then we can get a brand-new way of the arrangements. (1). We can find many theorems about this sequence according to this special arrangement of the positive rational numbers. (2). We can prove the rule that this fraction sequence includes all of the positive rational numbers by mathematical induction. Furthermore, every positive rational number appears only once. (3). After dividing this sequence into several parts, we can get a sequence rule list by using trial balance and find a faster method to express the sequence. (4). Arrange the an sequence by the tree model. By this way, we can get all of the positive rational numbers much faster. (5). Finally, we can develop the operation method to solve the questions that what position would one positive rational number be in the sequence and what is the first, second, third or nth positive rational number of the sequence.

A New 3-Dimensional Model for the Periodic Table of Codons

a. Purpose of research- Since the discovery of genetic codes and the dogma of 64 codons coding for 21 amino acids, scientists worldwide have been interested to know the reason(s) behind this unique number ratio (64:21). This ratio indicates certain form of inefficiency in the replication of amino acids. Such inefficiency can be explained through symmetries in the condons coding for the same amino acids. In the light of that, my project looks for patterns in the properties of amino acids and symmetries in the codons combinations. Using these analysis findings, I invented a three dimensional periodic table for the codons and amino acids that has a points to layers ratio of 64:21. b. Procedures- To get started with the project, I searched for relevant information in books and the Internet. After locating the relevant materials, I began my analysis by looking for non-random patterns in the correlation between codons and the respective amino acids they code for. At the same time, I try to look for symmetries in the codon distributions and suggest new and innovative models for a periodic table of codon combinations. I have come out with mainly a new model, with its own unique ideas and concepts behind it. Finally, I will try to match a property of the amino acids to the positions of the codons such that the table shows a gradual change in property of the amino acids, together with the symmetries. This will effectively explain the unique codons to amino acids ratio and lead to discovery of possible amino acids. c. Data- This research is primarily conducted based on the conventional 2D periodic table and no experimental data is collected. After much analysis, I have come up with the 3-sided triangular pyramid model. This model is inspired by the ratio of 64 codons coding for 21 amino acids, which can be easily approximated to 3:1. It is made up of a triangular pyramid that is three-faced, with the bottom side unutilized. As a triangular structure, each layer has dimensions in the multiples of 3. Layer 1 consists of 1 point, layer 2 with 3 points, layer 3 with 6 points and so on… until layer 7 with 18 points, having a total of 64 points. This 64 points to 21 layers ratio is consistent with the codons to amino acids ratio! d. Conclusions- The unique 64:21 ratio suggest certain form of inefficiency in the replication of amino acids. This may be explained through symmetries in condons coding for the same amino acids. A general 3:1 ratio can be approximated and this suggests a high possibility for the existence of a three-sided symmetry in codon combinations. Thus, this idea of a three-sided symmetry gives rise to my 3-sided triangular pyramid model. This new model of a 3-dimensional periodic table for codon combinations would be useful in explaining such a unique 64:21 ratio and serves to provide a basis for better understanding of the relationship between codons and amino acids. This new model may also lead to the discovery of currently unknown amino acids.

逆勢求生-K子祺和局之研究

數形合一

這份研究是關於一個「數形合一」的問題,研究的主要目的是找出同時具有兩種圖形數身分以上的數。研究結果發現雙重多角數必定存在,但個數可能有限個也可能無限多個,有些雙重中心多角數是有限多個,有些雙重中心多角數是無限多個,但令人意外的是同時是K角數和中心K角數的數卻皆是永遠是無限多個,我對其模式進行了探究並加以具體分類,並說明原因。研究過程中發現遞推關係可以大大簡化計算的步驟,可簡潔快速的求出這些數。我也證明了同時是三、四、五角數的數只有 1。此外,我將研究應用在熱門的平衡數(balancing numbers)和NSW數(NSW numbers)等上面,應用多角數的研究解決一些熱門的問題和找出了圖形上不證自明的結果。

長方體內最少完全城堡數

我們試著尋找所需最小的城堡個數以看守整個a × b × c (a,b,c ? N) 的長方體。所謂城堡是一種棋子,當放置城堡的位置是(x, y, z) ,則(x, y,t)、(x,t, z)、(t, y, z) (t 是任何不超出邊界的正整數)是這個城堡可以看守的格子。我們用這些城堡來完全看守長方體,試著找出其最小值。在2005 年我們猜測了a = b = c 、a = b c 、a > b > c 的上界,而在2006 年時完成了a = b = c 、a = b c 的大部分情況的證明,少數不能解決的部份也提供了不錯的上界。目前我們在a = b = c 、a = b c 的情況幾乎完全解決,目前正在向a > b > c 的部份發展。A generalized searching method of finding the minimum number of castle which can oversee all over the rectangular box, defined as a × b× c (a,b,c ? N) , is presented. The castle here is defined as one kind of chess. The castle positioned as (x, y, z) can direct the lattice points of (x, y,t) 、(x,t, z) 、(t, y, z) (t is the positive integer and smaller than the box size). These castles we use here is to oversee the rectangular box and to help us to find the minimum number. In 2005, we got the upper bound of overseeing the rectangular box in the conditions of a = b = c、a = b c、a > b > c , while in 2006 we complete the proofs of the minimum number of castles based on the conditions of a = b = c 、a = b c . The further work we want to attain is to complete the case of a > b > c.

轉角遇到愛-街道方格中不期而遇的機率

在m×n的街道方格上,甲從左下到右上,乙從右上到左下,沿格線走捷徑前進,探討兩人相遇機率。 依相遇點型態不同,相遇機率分為m+n為偶數與奇數兩種形式。當分岔口選擇路徑之機率均等時,發現偶數時的機率大於奇數的機率,並證明若固定n值,則相遇機率隨m增加有鋸齒狀的下降趨勢。另外,在m+n為大於5的定值時,街道方格越接近正方形,相遇機率越大。 當選擇路徑之機率不均等時,m+n為偶數時的相遇機率不必然大於奇數的機率,並且當選擇路徑之機率的比值接近m/n時,可得最大的相遇機率。同時分析了相遇機率圖形的上升、下降趨勢與鋸齒狀等多種樣貌的形成條件。

整係數多項式裡有乾坤-平衡多項式

本文主要研究以數學方法探究物理上的平衡問題,將物理與數學的代數、數論、組合及幾何做了緊密的結合,並導出幾個有趣的結果。文中得出n的因數結構與平衡多項式的關係,以及平衡多項式與平衡問題一般解的關係,並進一步探討其平衡的排序策略及個數。再則將平衡多項式引入複數平面,可以看到許多有趣的幾何性質,並進而回歸至物理的應用。

探討正n邊形的內接正三角形

對於一個正n邊形,若一正三角形三個頂點分別位於正n邊形的三個不同邊上,則稱此正三角形為該正n邊形的內接正三角形。本次科展的主題,就是探討正n邊形的內接正三角形之作圖方法,以及作出的圖形中各種漂亮性質。