The Levitating Ball
This project was inspired by a tournament call the International Young Physicist’ Tournament (IYPT). The problem could be broken into two aims: ‘Investigate the forces that cause a ball to levitate in a titled airstream’ and ‘optimize the system for the maximum angle of tilt that results in a supported ball’. The first stage of the investigation was research and learning. Two fluid mechanics courses online were used to build a basic of knowledge of the subject. Next a force diagram was created to model the forces acting on the ball. The diagram identified a force called the lift force that must be acting on the ball to be supported. There were three contending theories that could explain the lift force: The Bernoulli theory, the Coanda theory and the Magnus theory. A practical investigation was then instigated to differentiate between these three theories. Since the Magnus theory is only applicable if the ball is spinning in the airstream, this theory was isolated by changing the center of mass of the ball but keep everything else constant (this allowed control of how much the ball spun in the airstream). Changing the center of mass didn’t impact on the maximum angle of tilt at all, proving that the spinning of the ball isn’t producing a significant amount of lift, and therefore the Magnus theory couldn’t be a cause for lift. Because further testing couldn’t isolate the Coanda and Bernoulli theories, a solution was developed to explain why the two remaining theories might co-exist. Further testing methods have been designed to investigate this possibility in more depth. To meet the second aim of this project, an investigation was launched to see how parameters affected the maximum angle that the ball could be supported at. The parameters investigated were: Ball radius, ball mass, ball surface, air speed and airstream diameter. A lot of time was spent creating a reliable experimental method. The method could be used to support a ball in an air stream, slowly tilt the air stream, and then measure the angle of tilt the moment that the ball fell out. After experimentation, a table was created to describe how the listed parameters affect the maximum angle of tilt that a ball can be supported at. Explanations were proposed for why each parameter affected this angle. Future experiments have been devised to build a deeper understanding of the effects of a wider range of parameters.
Fabrication and Characterization of Dye-Sensitized Solar Cells Using Bixa orellana Seeds and Basella alba Leaves
Dye-sensitized solar cells (DSSCs) have cheaper and easier means of fabrication compared to the currently used solar cells, which are mostly silicon-based, so DSSCs are developed for a prospect of solar energy accounting for a higher percentage in the world’s total energy production, which is currently 0.1%. However, compared to their inorganic counterparts, their efficiencies are low, and the search for a dye that will maximize the potential of DSSCs is still ongoing. The aim of this study is to be able to evaluate the absorption range in the solar spectrum of dyes extracted from Basella alba leaves and Bixin orellana seeds, and of dyes resulting from the mixture of both extracts, using UV-Vis Spectrophotometer, with the objective of increasing the absorption; to be able to fabricate functional DSSCs from the individual and mixed dyes; and to be able to evaluate the different conversion efficiencies of the DSSCs of the individual and mixed dyes using Linear Sweep Voltammetry, with the aim of increasing the conversion efficiency due to a wider absorption range. B. alba leaves and B. orellana seeds were extracted using soxhlet extraction. The clean extracts were mixed in different proportions, and were characterized using UV-Vis Spectrophotometer. The two individual dyes together with two proportions of the mixed B. alba:B. orellana dyes, 1:1 and 2:1, were then incorporated into DSSCs. In the fabrication of DSSCs, twelve plates of Fluorine doped tin oxide were coated with titanium dioxide (TiO2) using spray pyrolysis. They were sintered and scraped, and were afterwards immersed in the four dyes for four days. Platinum plates were placed on top, and iodine-triiodide couple electrolyte was introduced via capillary action. The sealed DSSCs were subjected to Linear Sweep Voltammetry under dark and illuminated conditions, using a sun simulator. Results from the UV-Vis spectrophotometry showed that mixing the dyes had increased the absorption range of the individual dyes, although not superpositionally, and that the 2:1 mixed dye has the most potential. Being incorporated into DSSCs, the dyes, including the mixed ones, have successfully converted solar energy into electrical energy, as shown by the significance in conversion efficiencies under dark and illuminated conditions. However, despite the increase in the absorption range, neither of the mixed dyes have shown a higher conversion efficiency than the individual ones, which can be accounted for a possible weaker interaction between the two dyes and the TiO2, resulting to lower efficiencies. The study has been able to obtain and characterize dyes from B. orellana seeds and B. alba leaves and has been able to incorporate the dyes into DSSCs. With the wider absorption range of the mixed dyes, the study has been able to confirm the possibility of the dyes to maximize the potential of DSSCs, as shown by the successful conversion of solar energy into electrical energy of all fabricated DSSCs, including those of mixed dyes. If the possible problem with the dye-dye as well as the dye-TiO2 interactions could be solved, the possibility of much higher conversion efficiencies could be expected.
Carbon Nanostructures Via Dry Fce Exposed to High Temperature
This science project is designed to answer a question of whether or not a chemical reaction is needed to produce industrial quantities of carbon nanostructures by exposing dry ice to a high temperature that is at least 3100°C. A small carbon arc furnace powered by an electric welder is used to produce the high temperature. During control runs, the carbon arc furnace is energized for a predetermined time, after which the carbon arc furnace is de-energized and any carbon particles within the furnace are collected. During carbon nanostructures synthesis runs, dry ice is placed within the carbon arc furnace. The carbon arc furnace is energized and the dry ice is consumed for the predetermined time. Carbon nanostructures synthesized during the synthesis runs are collected once the carbon arc furnace is de-energized and allowed to cool. The volume of the carbon particles collected during the control runs is compared to the volume of the carbon nanostructures produced by the synthesis runs. This science project has discovered that on average at least 16 times more carbon nanostructures are produced during synthesis runs consuming dry ice as opposed to the control runs. Moreover, the synthesis runs did not rely on chemical reactions. Further still, samples of the synthesized carbon nanostructures were imaged using a transmission electron microscope (TEM). The TEM images clearly show high-quality carbon nanostructures that include carbon nanotubes, faceted carbon nanospheres, and the super-material graphene.
Physical Characterization of a Wide Aperture Segmented Reflector Telescope
Characterization of telescope lenses using physical optics and selection of the optimal physical parameters of a reflecting telescope’s optical units were done to improve the design, cost-efficiency, and quality of the 64-cm telescope (named Oof) housed at the National Institute of Physics. Characterization has been done through numerical modeling of the point spread function (PSF) in Python. The PSF code was based on the method of getting wave vectors by Richards and Wolf. The optimal PSF was established to be the PSF of a large monolithic mirror. The PSF of a single optical lens was compared to its counterpart segmented lenses. Through the comparison of maximum intensity, the normalized mean square error (NMSE) and the Linfoot’s criteria of correlation quality, fidelity, and relative structural content, the study has produced results which proved that highly segmented optical components produce results with less quality compared to less-segmented optical components. It was found that as the segmentation increases, the maximum intensity decreases. Higher values of maximum intensity denote higher light gathering power. The normalized mean square error of the set-ups having one to seven layers had values greater than zero but less than one. This denotes that the PSF of those set-ups are near the PSF of the optimal set-up. Higher values of correlation quality, fidelity, and relative structural content denote higher correlation, higher signal to noise ratio, higher closeness of correspondence between the optimal set-up and the segmented set-up. The number and the size of the optical components of the segmented mirror were manipulated in order to achieve a negligible difference between that of the optimal PSF and the PSF of a segmented mirror. The equivalent single lens radius in terms of maximum intensity of the current set-up of the telescope was determined to be 234.25 mm. If the optimal PSF is achieved, the physical parameters of the optical components generated may be applied to the optical components of the 64-cm telescope. The design that resulted from the study could be used in the future construction of a wide-aperture telescope, which could aid in the acquisition of knowledge about heavenly bodies.
GAS SENSOR APPLICATIONS WITH PHOTONIC CRYSTAL FIBER AND CARBON DIOXIDE SENSOR DESIGN
It’s very important to control and monitor gases that are produced by industrial applications in different values and kinds because they can cause environmental pollution and health problems. Photonic Crystal Fiber (PCF), which is a different kind of optical fiber, is a new alternative for gas sensors due to their small sample volumes, low transmission losses and high flexibility properties. PCF’s are silica-glass fibers, made by periodic sequence of hollows along the fiber. By filling these hollows with optical liquids or gases very sensitive sensors can be made. In this project, we aimed to design a sensitive sensor by filling the hollows with proper gases and liquids in the solid core PCF. For these applications ethanol, methanol, toluene vapors and carbon dioxide was used. And to observe carbon dioxide’s effects ionic liquid (EMIMBF4), which carbon dioxide can dissolve in, was filled then the experiments were repeated. It was observed that the transmission of light in PCF changed depending on the refractive index of the gas that was filled. With this change, it was understood that there were another gas besides the usual containments of air. Our system could measure the absorbtion peak of toluen so it can be used as a toluen dedector and when ionic liquid filled the fiber, two steps that occur in the spectra of corbon dioxide so it can also be used as a carbon dioxide dedector. The system was customized as a carbon doxide sensor in a cost-efficient and portable way. Our system can be specialized and easiliy used with right light source, which is efficient to see the absorbtion peaks, and proper liquids to dedect intended gas. Making a carbon dioxide sensor by filling PCF with ionic liquid was never attempted before. Also the lack of carbon dioxide sensor studies supports the originality of our project. That’s why we think our project will contribute very importancies to the existing literature.