全國中小學科展

電腦科學與資訊工程

SPYNIK

Nikhil’s technology studies main client told him how she had no idea about how to\r stop her children looking at all sorts of website and asked him for a solution to a\r problem he initially thought was impossible to crack. Nikhil has definitely ‘cracked’\r this one: with a dedicated website his clients can log into and monitor what is going on in any computer the little box of electronic tricks is plugged into from anywhere in the\r world. This unit controls the electronics and stores the history of the web pages that the user has visited. Not only that, the client can cut the internet (and re-connect it) to the remote computer at will. At the heart of Nikhil’s box of tricks is a web-server module (The Wiznet) and a powerful microcontroller, the AtMega32. Nikhil has designed the\r board, connected the electronics and written the code to allow it to communicate with\r the computer and remote client.

SMS Link-Interactive

SMS.Link-INTERACTIVE is a system that facilitates the exchange\r of information between a central computer server and a remote cellular\r phone user, and allows remote modification of data in the computer\r through SMS. A cellular phone with a GSM modem is connected to the\r computer physically via a data cable. A program in the computer is\r notified whenever the cellular phone receives new messages, processes\r new messages by first authenticating the user’s identity, then checks for\r the information being asked for, as well as the changes that the user wants\r to be done. Information is then retrieved from a database in the computer\r and the appropriate changes are made. A message containing the\r requested information and a list of changes done is then sent to the user\r through SMS.\r Tests were made to get the speed of the system. Accuracy tests were\r done to determine if the program was able to ascertain the validity of the\r user correctly, return the requested data, and change the specified\r information.\r Using this system, doctors can access a patient’s data and change\r prescriptions; teachers can correct errors in grades; clubhouse personnel\r can add memberships; all these from a remote location by sending a SMS\r request to the cellular phone connected to the server.

On Course Line Management

The Online Course Management system was developed in 2012 by George Moon to address the issue of creating course books at Burnside High School in Christchurch, New Zealand. The course books are designed to inform students, staff and parents of the many courses that are available for students to choose for their next year of study. In the past, the system that the school used consisted of large amounts of paperwork and duplication. Not only did this system require a lot of effort from staff, but the course book cost the school thousands of dollars to produce, as it had to be sent off to be published into a large book that would be read by students for a week, then likely thrown out. This year the school decided to digitise the course book, so that students would look at their courses online. Earlier this year, the school believed that the new School Management System (SMS) ‘KAMAR’ would be able to handle all of the necessary information, however this was not the case. Because of this, they needed a simple solution that would collate all of the course data, and then output it as a course book. I developed my project to do this. It is a web based program that is accessible by staff on their computers which enables them to enter in all of the course and assessment data for their departments. As it is all securely stored on a central database, it reduces duplication and staff workload, as well as the added environmental bonus of less paper being used. The program also outputs data in a number of ways including as a coursebook PDF (digital document which can be uploaded or printed), an Excel spreadsheet and a webpage for easy viewing. It can be sorted or printed by different categories (such as level, faculty, department), which proved to be a very useful feature. Following some research on areas such as design principles, browser compatibility and screen resolution (computer screen size), the program was designed to make best use of this this information. For example, most of the computers that staff would access the website on were of a similar size screen, so I made sure that my website worked well for them. I also used my research on design principles to try and create a simple, clean interface that users with limited computer skills would easily be able to navigate around. The outcome was real, as it was used by the school to generate their coursebook this year. Following a 95% student completion rate of course selection many months earlier than previous years, the system (although it had some issues) was pronounced a success, and the school is looking to use it in the years to come. There are a number of steps I am looking to take in the future with this program including the potential sale to other schools, so they can take advantage of the features it has to offer.

彩色數位影像資料庫檢索架構-以國立自然科學博物館為例

國立自然科學博物館推出《數位博物館》,內含大量生物圖鑑及豐富館藏文物之圖文資 料,無論用於資料查詢或提供進階研究資料皆有極大貢獻。但經使用後發現,其檢索架構仍 只提供關鍵字搜尋及分類瀏覽,無法精確檢索出欲查詢之資料,尚有改進之處。 於是針對現有之影像檢索系統,我們跳脫出傳統以文字為檢索之依據,而設計出一連串 之改進方案,如下: 1. IRHI 色調辨識影像檢索,針對色調相近之影像類群提供良好檢索架構。 2. IRCI 輪廓辨識影像檢索,針對輪廓相近之影像類群提供良好檢索架構。 3. IRHCI 色調暨輪廓辨識影像檢索,綜合前述兩種方法之優點所設計。 A while ago, the National Museum of Natural Science put forth the “Digital Museum,” which contains great amount of biological pictographs and abundant collections of textual as well as pictorial materials. This has contributed tremendously to information search and advanced research. However, after employing them, we come to discover that its retrieval paradigm only provides key-word search and categorization browse, without enabling us to precisely pick out the desired data. Thus, this paradigm leaves something to be desired. To make up for the insufficiency of the existing system, we have escaped from the concept of searching by texts. Instead, we have designed a series of improvements. They are as follows: 1. IRHI(Image Retrieval by Hue Identification): Providing a sound paradigm for the image groups composed of similar hues. 2. IRCI(Image Retrieval by Contour Identification): Providing a sound paradigm for image groups composed for similar contours. 3. IRHCI(Image Retrieval by Hue and Contour Identification): Combining the strengths of the above two paradigms.

AI人工智慧-應用社群網站互動於類神經網絡訓練之研究

傳統的類神經網絡人工智慧多半是以受控訓練為主。然而在本次研究中,我們先建構出一套以類神經網絡模型為基礎的人工智慧,再利用社群網站噗浪(Plurk)上使用者與此系統的互動,訓練類神經網絡,以期驗證社群網站作為訓練來源的效率與準確度。我們利用分析詞、句的方式,促使系統做出自動的回應,同時並收集相關資料作為統計與修正之用。經過漸進式的調整與精進後,我們成功利用高度模組化的人工智慧系統,達成「利用社群網站資料自我修正」的目標,且其準確度呈現遞增的趨勢。我們相信只要充分掌握社群文化,社群網站做為資料來源對學術研究必有所裨益,且能為自然語言領域帶來更多可能性。

烷類數位密碼

本研究主題主要是解決化學上複雜同分異構物的繪製以及其命名,因為物質在結構複雜時其同分異構物變化之多令人難以捉摸,於是我應用電腦強大的邏輯處理以及運算判斷的能力來讓電腦繪製。以下是我想達成的目的:(1)排列出分子式的同分異構物(2)顯示出同分異構物之示性式、結構式(3)預知尚未創造出物質的性質研究中我創造出以下原則讓我方便達成研究(1) 數位密碼:為了讓電腦方便執行我使用數碼的方式表達各種同分異構物(2) 五大原則:此原則能讓不僅是電腦甚至是各個要繪製同分異構物的人都能有架構的繪製,不會遺漏任何的組成。(3) 3D顯示:透過X3D軟體的協助我能讓使用者透過立體的方式了解到物質的結構。The purpose of this research is to solve the problem of Isomer’s structure drawing and named problem. It’s hard to predict the status of complex Isomers, so we use the powerful logic and calculational ability of computer to draw the structure of Isomers. The following points is the goal that we want to reach (1) Arrange the structure of the Isomer’s formula (2) Show structural formula of Isomers (3) Predict the chemistry of things that haven’t been created During our research, we create the following principle to help us do the research (1) Digital Codes: In order to let the computer to run the process, we use digital codes to express all the Isomer’s formula. (2) The “5 Rules”: The 5 rules can help not only computers but all the people who try to draw the structure of Isomers without losing any of compositions. (3) 3D Display: Helping our user to understand the structures of materials with the 3D images producing by the “X3D”.

火災逃生指引系統

在台灣公共場合快速成長下,例如:大賣場、百貨公司、展覽會場,這些公共大型場合都有很好的消防設施,但始終有人葬身於火場? 原因就是幾乎所有的人都不會去特別注意逃生平面圖,導致花太多的時間尋找出口,這樣生存機率就大大降低。火場裡面有太多的致命因素,像是:高溫的空氣,毒氣、濃煙…等,所以必須把握每一分每一秒。為了加快逃生速度,我們將所有的通道都設有導引警示器,逃生者只要順著導引警示器就可以安全到達出口。為了因應公共場合有龐大的人群,所以逃生路線不能只有一條,因此我們設計上是有多條路線,一、可以解決龐大人群,二、可以加快速度。;With the rapid growth of public places in Taiwan, evacuation system is of more and more importance. Actually, public places, such as hyper malls, department stores and exhibitions, are not without fire-fighting equipment, but why is that there are still people getting killed in a fire? The reason is that almost no one actually pays attention to the evacuation plans. As a result, it often takes too much time to find the exits, which lowers the possibility of survival. In a fire, there are usually too many fatal factors, which could lead to death, such as high temperature and heavy smoke; therefore time is precious when escaping from a fire. To fasten the speed of evacuation, we set guiding alarms in every passageway. By following the guiding alarms, people can get to the exits safely. Besides, owing to the huge amount of population in public places, there can’t be only one route out. With regard to this, we design many routes in order to enable and fasten the speed of evacuation of huge amount of population.

Technology of web site advancement

Internet by its content represents a fountain of information, while from the point of view of its arrangement it is a huge dump. There are an enormous number of web sites. Multiple web sites are commercially directed, i.e. are aimed at profit earning. As profit depends on the number of visits to web site, no visitors means no profit. So, to obtain more orders, web site producers should first of all ensure good inflow of visitors (web site attendance). Every year this task becomes more and more critical for commercial web site owners (and not only for them), as the number of similar content web sites increases steadily along with competition intensifying correspondingly. The process of establishing conditions to attract more visitors is called web site advancement. The present paper discusses various ways of how to increase the number of web site visitors, it also describes the particular process of "Theater to Children" (www.teatrbaby.ru) web site advancement. Based on the paper outcomes a CD multimedia manual "Technology of web site advancement" has been developed that will help web site producers to achieve good attendance for their network resources. As the purpose of web site advancement is visitor number increase then the main criterion of web site advancement efficiency should be the number of visitors for a certain time period, e.g. for 24 hours, a week or a month. Taking into consideration that about 80% of Internet users retrieve information through search systems, the major growth of visitors will occur owing to the enhancement of web site visibility in search systems.

Escher狂想曲

本研究運用兩套方法,成功的化簡、篩選眾多結構;配合繪圖檢驗,證明了六邊形共有20種對稱拼貼圖結構。透過本研究,在適當軟體的支援下,使用者可快速且精準的設計出富有創意的密貼圖樣;所有的圖形結構亦可被更加廣泛運用。運用本研究理論與結果,我們撰寫了一Visual Basic程式,可供使用者快速方便判別任意的六邊形磁磚是否可對稱拼貼;最後,我們將研究結果應用於相關立體圖形,如:環面(Torus)、圓柱曲面(Cylinders)及莫比紙圈(Mobius Strip);運用前人的研究,再配合本研究結果,將可以有更廣泛的應用,如:阿基米德立體圖….等。

Automatically Categorizing Commercial Segments Using Multiple Computer Vision Techniques

The purpose of Computer Vision is to understand the methods by which humans\r process visual information and likewise to create computer algorithms similar to these\r processes. Through careful observation, a computer algorithm was developed to mimic\r how humans recognize logos in television commercials. After visual analysis of\r numerous commercial sequences, it was hypothesized that the key frames (frames in\r which the logo resides) could be found using the intersection of color histograms; the\r logo region could be found using the edge density within the key frames; and the logo\r could be identified utilizing a correlation method with a database of stored logos, scaled\r to different levels using Bilinear Interpolation.\r Color histograms were implemented using one-dimensional arrays with 24 bins;\r key frames were determined by calculating the intersection between consecutive frames’\r color histograms. The edge density was calculated by convolving the key frame with\r the number of edge pixels within a 21X21 area. The identification of the logo was\r determined by computing the Sum of Square Differences between the logo region and\r the database of logos on different scales; SSD values were normalized for different\r scales.\r The algorithm was tested on 14 different sequences and determined the key frame\r with 80% accuracy. By segmenting the sequence into two key frames, the algorithm\r generated 93% accuracy. The algorithm also identified the logo region with 93%\r accuracy. The identification of the logo yielded anomalous results. These data suggest\r that motion between consecutive frames in commercial segments decreases around the\r display of the logo. They also suggest that the logo region has the most visible edges\r within the key frame.\r Future study includes a complete overhaul of the logo recognition algorithm. The\r correlation algorithm (SSD) does not work accurately enough to be used. Therefore, the\r next step is possibly to look at the edge information about the key frames. As the Canny\r algorithm determines the edges of an image, it has to determine the direction (or\r orientation) of the edges. Therefore, a proposed study includes utilizing an edge\r orientation histogram of the database of the logos and the key frames. This would mean\r that the algorithm would identify the logo in the key frames by matching edge\r orientation histograms.