全國中小學科展

電腦科學與資訊工程

沙盒類遊戲式學習平台系統伺服器架設節能效率研究:以Minecraft為例

本研究以 Minecraft 為例,探討沙盒類遊戲式學習平台系統伺服器架設的節能效率,旨在透過動態調整伺服器數量降低總CPU使用率,提升伺服器的管理效能和能源使用效率。隨著線上遊戲的普及,伺服器的營運管理變得越來越複雜,如何在滿足玩家需求並同時降低能源消耗成為一個重要議題。本研究將分析伺服器資源使用狀況,特別是在玩家活動量高低波動的情境下,透過管理策略的調整,探討其對節能效率的影響。 研究透過實證數據的收集與回歸分析,建立一套可應用於 Minecraft 伺服器的節能動態調整系統,並探討動態調整的具體效率。研究結果發現隨著玩家人數增加,越接近系統負載上限,節能效果會越來越不明顯,以本次研究的伺服器來講玩家人數到達35人以後就無法再減少伺服器數量。

沙盒類遊戲式學習平台系統伺服器架設節能效率研究:以Minecraft為例

本研究以 Minecraft 為例,探討沙盒類遊戲式學習平台系統伺服器架設的節能效率,旨在透過動態調整伺服器數量降低總CPU使用率,提升伺服器的管理效能和能源使用效率。隨著線上遊戲的普及,伺服器的營運管理變得越來越複雜,如何在滿足玩家需求並同時降低能源消耗成為一個重要議題。本研究將分析伺服器資源使用狀況,特別是在玩家活動量高低波動的情境下,透過管理策略的調整,探討其對節能效率的影響。 研究透過實證數據的收集與回歸分析,建立一套可應用於 Minecraft 伺服器的節能動態調整系統,並探討動態調整的具體效率。研究結果發現隨著玩家人數增加,越接近系統負載上限,節能效果會越來越不明顯,以本次研究的伺服器來講玩家人數到達35人以後就無法再減少伺服器數量。

AI-Based Customer Sentiments Dashboard

In this fast-paced digital economy, customers' judgment is based on their experience with a company’s products and services. Customer reviews become a vital source of information for companies because this information can be used to enhance their products, understand customer wants and needs, improve brand reputation, and provide a competitor’s advantage. A company can understand customer needs and wants by going through reviews. Customers are encouraged to leave not only their opinion but also their ideas for the development of the product or service. By understanding these reviews, a company can actively respond and engage with a reviewer or problem. Failure of companies who don't answer customer queries may negatively impact customer loyalty. Customers will feel neglected by these companies and will choose competing companies to handle their needs. Additionally, customers may speak negatively about a company that does not respond to reviews. The AI-based customer sentiment dashboard can help gain a company's competitive advantage by identifying weaknesses in themselves and others. Companies will be enabled to understand where they succeed and where improvement is needed compared to their competitors, leveraging businesses to address strengths and weaknesses before competitors do. Through AI-based customer sentiment dashboards, a company can analyze its competitor’s reviews and use that information as leverage to make improvements to its products and services. Customers are increasingly leaving reviews on popular apps like Google Play, Stamped.io, Yapto, and Judge.me, Loox, Qualaroo, and Yelp. The reviews are rich in customer sentiments offering valuable insights into user satisfaction and pointing out the areas for improvement that are crucial to every company no matter how big or small. Despite their value, manually processing these reviews is a challenging task due to the large volume of unstructured data. Manual processing is also vulnerable to bias and human error, leading to inaccurate information. Traditional methods such as surveys have been proven to be ineffective if the main focus is targeted feedback and have low responses compared to reviews. The advances in artificial intelligence like Natural Language Processing (NLP) help us interpret and analyze human language and generate outputs like predicting what type of sentiments are in reviews. This project proposes developing an AI-based sentiment analysis model to evaluate customer feedback on two widely used taxi applications. Natural Language Processing libraries, such as the Valence Aware Dictionary and Sentiment Reasoner (. The model aims to categorize customer reviews into positive, negative, and neutral sentiments.

建構標準舞蹈姿勢評分系統

在現今社會,個人越來越依賴自主學習以提升技能和知識,而舞蹈學習尤其受到關注。然而,在沒有專業指導的情況下,學員往往難以掌握舞蹈動作的細節,也難以清楚地評估自己的表現與標準示範之間的差距。 為了應對這一挑戰,本研究利用人體姿態識別演算法OpenPose,捕捉舞蹈者的關節點。通過這項技術,針對舞蹈的標準動作、力度、流暢度等方面,成功地開發出一款自動評分系統。 通過人體姿態識別技術,我們能夠深入分析舞蹈動作的細節,讓學員與標準舞蹈動作進行比較,以確認學習上的差異。我們希望通過這項研究,學員能在沒有專業指導的情況下,利用網路平台創建更有效且有趣的自主學習環境。

Enhanced Hybrid Ensemble Model for 10-Year CO2 Emissions Forecasting in Taiwan: A Comparative Study of Univariate and Multivariate Models

隨著氣候變遷對人類生活帶來越來越大的的影響,CO2 為氣候變遷的主要驅動因素之一,準確預測二氧化碳(CO2)排放量變得至關重要。 本研究深入探討了各種先進的單變量和多變量時間序列模型,並提出一種新穎的混合集成模型,旨在提升台灣CO2 排放的預測準確性。 我們採用了自1965 年至2022 年的年均數據集,涵蓋CO2 排放量以及天然氣、煤炭和石油的消耗數據,利用標準評估指標來評估模型表現。在多次實驗中,我們選定了三個表現最佳的模型,並通過疊加泛化技術將其預測結果整合至一個元模型。所提出的混合集成模型達到了1.398% 的MAPE 分數,顯示出相較於傳統模型更優越且穩定的性能。 經過全面優化後,本模型可為政策制定者和產業領袖在制定減少CO2排放的決策時提供了可靠的依據。

Enhanced Hybrid Ensemble Model for 10-Year CO2 Emissions Forecasting in Taiwan: A Comparative Study of Univariate and Multivariate Models

隨著氣候變遷對人類生活帶來越來越大的的影響,CO2 為氣候變遷的主要驅動因素之一,準確預測二氧化碳(CO2)排放量變得至關重要。 本研究深入探討了各種先進的單變量和多變量時間序列模型,並提出一種新穎的混合集成模型,旨在提升台灣CO2 排放的預測準確性。 我們採用了自1965 年至2022 年的年均數據集,涵蓋CO2 排放量以及天然氣、煤炭和石油的消耗數據,利用標準評估指標來評估模型表現。在多次實驗中,我們選定了三個表現最佳的模型,並通過疊加泛化技術將其預測結果整合至一個元模型。所提出的混合集成模型達到了1.398% 的MAPE 分數,顯示出相較於傳統模型更優越且穩定的性能。 經過全面優化後,本模型可為政策制定者和產業領袖在制定減少CO2排放的決策時提供了可靠的依據。

基於LLM的互動式口述影像系統

本研究旨在透過LLM 將影片內容轉為口述影像,探討及比較不同影片處理方式、LLM 對於圖片及影片的敘述,串接成一套自動化的口述影像系統。口述影像原本是為視障者製作的,現在本研究調整系統,讓有需求的一般大眾也能有效、容易及快速的了解影片內容。 本研究中的口述影像系統具有以下特點: (一)利用LLM 擅於處理視覺訊息及自然語言的優勢,將影片分為多張圖片,由LLM分別生成敘述後再整合為影片的整體敘述。 (二)運用LLM 會留存對話紀錄的特性,使用者可在系統中針對疑問與LLM進行問答。 (三)串接不同的 LLM,尋找製作口述影像的最佳組合。 藉由LLM 將影片轉換為口述影像,實現互動式的口述影像服務。除了可以滿足視障者的觀影需求,更重要的是當一般民眾沒有時間觀看影片時,也能透過口述影像系統了解影片內容。

以深度學習進行籃球慣用動作分析

本研究聚焦於籃球員的慣用動作分析,透過深度學習技術開發了一套籃球動作分析系統,旨在準確分析籃球員在籃球運動中的個人動作特徵來進行動作辨識。我們透過自行蒐集籃球動作的影片,並使用MMAction2這個資源庫來進行動作辨識模型的訓練,將訓練好的動作辨識模型用開發慣用動作分析系統。系統流程首先使用滑動視窗(Sliding Window)的機制將即時拍攝的影像變成有序列的連續影像片段,再即時傳送至進攻動作辨識的深度學習模型中,來辨識出連續影像片段中的動作序列屬於何種特定動作,藉此將多個連續影像片段中的動作序列各自轉換為單一動作單元並依次輸出。最終,系統基於前述單一動作資料進行綜合分析,以統計使用者的籃球慣用動作。此分析系統能為籃球愛好者提供清晰的動作偏好資料,具有提升訓練成效的潛力,同時為籃球技術分析與訓練提供了一個精確的數據分析工具。