Mentor Hunt App
The Information Technology (IT) area has shown great growth in recent years, even with the economic recession that 巴西 has been through and the impact of the coronavirus pandemic. It is estimated that by 2024 the area will have a deficit of more than 290 thousand professionals. However, companies still face other difficulties in hiring, especially people who are looking for their first job in the Information Technology area. Most part of these difficulties are lack of qualified manpower and high prerequisites to fill internship or junior positions. As a result, the objective of this project is: to develop a platform that connects people who seek guidance, improvement or professional relocation in the Information Technology area with professionals that already have the experience they are seeking. The first step was a research and analysis of similar platforms in the market, whose proposal involves mentoring or professional connections, and it concluded that there are no services that fully meet the project’s proposal. In the second step, a research was done about mobile development, highlighting Flutter and Firebase platform. The third step defined the application’s features, such as suggestion of users and mentors, search for users, become a mentor, private chat, video calls, Portuguese and English languages, light and dark themes and profile customization. The suggestion of users and mentors is done by a match with the registered users, relating their areas of work (where the user has experience) and the areas of interest of each one. For the coding of the project, Flutter and Firebase technologies were used. To design the app, it followed Material Design specifications. For testing and distribution, the app was published on Play Store, Google’s Android application platform. The tests were performed by both the researcher and a selected group of users to verify if the functionalities were in accordance to what was defined in the beginning of the project. Perceiving the correct functioning of the application, the project achieved the proposed objective. In addition, it expanded its reach area, because it is possible to find users and mentors from any other area of the market.
Enhancement of Online Stochastic Gradient Descent using Backward Queried Images
Stochastic gradient descent (SGD) is one of the preferred online optimization algorithms. However, one of its major drawbacks is its predisposition to forgetting previous data when optimizing through a data stream, also known as catastrophic interference. In this project, we attempt to mitigate this drawback by proposing a new low-cost approach which incorporates backward queried images with SGD during online training. Under this new approach, we propose that for every new training sample through the data stream, the neural network is optimized using the corresponding backward queried image from the initial dataset. After compiling the accuracy of the proposed method and SGD under a data-stream of 50,000 training cases with 10,000 test cases and comparing our algorithm to SGD, we see substantial improvements in the performance of the neural network with two different MNIST datasets (Fashion and Kuzushiji), classifying the MNIST datasets at a high accuracy for the mean, minimum, lower quartile, median, and upper quartile, while maintaining lower standard deviation in performance, demonstrating that our proposed algorithm can be a potential alternative to online SGD.
A Person Re-identification based Misidentification-proof Person Following Service Robot
Two years ago, I attended a robot contest, in which one of the missions required the robot to follow the pedestrian to complete the task. At that time, I used their demo program to complete the task. Not long after, I found two main issues: 1. The program follows the closest point read by the depth camera, which if I walk close to a wall next to, the robot may likely ‘follow’ the wall. 2. Not to mention if another pedestrian crosses between the robot and the target. Regarding these two issues, I decided to improve it. We’ve designed a procedure of using YOLO Object Detection and Person re-identification to re-identify the target for continuous following.