BIOINFORMATIC PREDICTION OF CORONAVIRUS (SARS-COV-2) MUTATIONS THAT INCREASE CONTAGIOUSNESS
Inhibitory effects of the secondary metabolite of actinomycete were examined on cell cycle of the yeasts of S. pombe and S. cerevisiae. The secondary metabolite was obtained from cultivation of the actinomycete isolated from the soil of Owakudani in Hakone, Japan. The fifth fraction of the secondary metabolite by ODS column separation (HK-T5), which was soluble to pure methanol, was used in the present experiments. The HK-T5 brought about the delay of forming colonies of S. pombe for about 11 days compared to that cultivated without the HK-T5. The delay of the colony formation was longer for the S. pombe cultivated with more amount of the HK-T5. The cultivation with HK-T5 also brought about the extension of the lifespan of the S. pombe for more than 10 weeks in a liquidus medium. The cell life recovered the ordinary manner by removal of the HK-T5, meaning that the activities of the HK-T5 is reversible. These facts confirm the suppression of cell cycle, and the delay of cell growth by the HK-T5. These phenomena were similarly observed for S. cerevisiae. Comparison of the action of HK-T5 with hydroxyurea, which is an anticancer drug inhibiting the cell cycle at S phase, clarified that the inhibitory action of HK-T5 worked at the phase earlier than S phase. The combined effects of HK-T5 on the cell cycle were evaluated with triamcinolone acetonide (TA), or aspirin, the former of which is a drug synchronizing cancer cells in S phase, and the latter keeping human cells in G1/G0 phases. The combined use of HK-T5 with TA synchronized the cells at the phase slightly proceeding from G1 to S phase without toxicity. On the other hand, the combined use with aspirin made the inhibitory effect of HK-T5 inactive. Hence, the HK-T5 is attractive as a drug for the extension of cell lifespan, and anticancer therapy.
BIOINFORMATIC PREDICTION OF CORONAVIRUS (SARS-COV-2) MUTATIONS THAT INCREASE CONTAGIOUSNESS
Inhibitory effects of the secondary metabolite of actinomycete were examined on cell cycle of the yeasts of S. pombe and S. cerevisiae. The secondary metabolite was obtained from cultivation of the actinomycete isolated from the soil of Owakudani in Hakone, Japan. The fifth fraction of the secondary metabolite by ODS column separation (HK-T5), which was soluble to pure methanol, was used in the present experiments. The HK-T5 brought about the delay of forming colonies of S. pombe for about 11 days compared to that cultivated without the HK-T5. The delay of the colony formation was longer for the S. pombe cultivated with more amount of the HK-T5. The cultivation with HK-T5 also brought about the extension of the lifespan of the S. pombe for more than 10 weeks in a liquidus medium. The cell life recovered the ordinary manner by removal of the HK-T5, meaning that the activities of the HK-T5 is reversible. These facts confirm the suppression of cell cycle, and the delay of cell growth by the HK-T5. These phenomena were similarly observed for S. cerevisiae. Comparison of the action of HK-T5 with hydroxyurea, which is an anticancer drug inhibiting the cell cycle at S phase, clarified that the inhibitory action of HK-T5 worked at the phase earlier than S phase. The combined effects of HK-T5 on the cell cycle were evaluated with triamcinolone acetonide (TA), or aspirin, the former of which is a drug synchronizing cancer cells in S phase, and the latter keeping human cells in G1/G0 phases. The combined use of HK-T5 with TA synchronized the cells at the phase slightly proceeding from G1 to S phase without toxicity. On the other hand, the combined use with aspirin made the inhibitory effect of HK-T5 inactive. Hence, the HK-T5 is attractive as a drug for the extension of cell lifespan, and anticancer therapy.
DEVELOPMENT OF PAPER-BASED ORIGAMI BIOSENSOR PLATFORMS FOR COLORIMETRIC DETECTION OF BIOCONTAMINANTS
Infectious diseases caused by bacteria from biological pollutants pose a great burden in terms of diagnosis and treatment, and millions of people worldwide die from bacterial infections. Detection of bacteria plays a critical role in clinical diagnosis and control of contamination, but is not accessible due to the high cost, complex devices and equipment required. In the project, an alternative to existing methods, a paper-based biosensor for the detection of model organism E. coli bacteria, which is visible, low cost, easy to use, can be integrated with a smartphone, is based on rapid color change in the exposed environments, drinking and pool water, wastewater, beverage products. platforms were developed. For the specific detection of E.coli bacteria, two different biosensors have been developed that can perform colorimetric detection in a user-friendly origami design, minimizing microchip and processing steps based on antibody-bound PVDF membrane and filter paper-based immunological method. In the presence and absence of target bacteria E.coli, the lowest detection limit of the biosensors obtained by using paper-based platforms that create a distinctive color on them, depending on the concentration, was 0.9x103 bacteria/ml for origami biosensor, 2.7x103 bacteria/ml for microchip biosensor and the widest dynamic linear operating range was calculated as 103-107 bacteria/ml. With the biosensor platforms we have developed, the use of only one smartphone for both qualitative and quantitative, visible results and analysis within minutes constitutes the originality of our project. With these promising results, the biosensors we have developed can also be used for the detection of different biological pollutants, do not contain complex devices and can be easily produced in large scales. We believe that the biosensors we have developed for the detection of biological pollutants in water and beverages, especially in regions where test laboratory infrastructure is not available, will contribute to the literature, public health, health economy and sustainable development goals such as clean water and sanitation, health and quality life, and life in water.