全國中小學科展

動物學

鉤盲蛇(Ramphotyphlops braminus)捕獵四部曲

Feeding behavior is the action which animals depend on maintain livelihood. Snakes usually use the three following ways to catch their preys: winding, venom-releasing and pressing their game to death. However, previews study is rare about the feeding behavior of Ramphotyphlops braminus. This puzzles us, prompting us to do in-depth research on it. When performing an experiment, we will use the camera with infrared function to record entire experiment and the obtained data will transform the graph. Our result shows the feeding behavior of R.braminus is a new way to catch their game, and the minute process of this special way is also written down in our report. We hope that the result can let everyone be clear about Ramphotyphlops braminus of soil ecosystem status, and it is an essential contribution for building the archive of Family Typhlopidae. 攝食行為是動物賴以維生的行為。在蛇類中,常見的捕捉方式有:纏繞、 使用毒液、壓斃等三種類型。但,文獻中卻沒有任何有關於鉤盲蛇(Ramphotyphlops braminus)的捕食行為。這使我們感到疑惑,並想深入探討。在實驗進行當中,我們使用紅外線攝影機將實驗全程錄製下來,並將所得的數據轉化成圖表。而其結果顯示鉤盲蛇(Ramphotyphlops braminus)的捕食行為是一種全新的模式,這種模式的詳細過程也被我們全部收錄到報告中。我們希望做出來的結果能讓大家對鉤盲蛇(Ramphotyphlops braminus)在土壤生態系中的地位更加了解,而且對於建立盲蛇科(Typhlopidae)資料庫有實質的貢獻。

斑馬魚胚胎發育時期中樞神經系統與單羧基運輸蛋白之相關性

Astrocytes provide energy to neuron mainly with lactate, which is transported through monocarboxylate transporters (MCTs). Among 14 isoforms of MCTs reported in mammals, only MCT1, 2 and 4 are expressed in brain and the three isoforms are found to differentially expressed in neuron and astrocyte, respectively. Based on these, “astrocyte-neuron lactate shuttle” has been proposed. However, no in vivo evidence was available so far to support this hypothesis. In the present study, zebrafish was used as a model to provide in vivo molecular physiological evidence for the involvements of MCTs in the development and functioning of central nervous system (CNS). Full-length cDNAs of the zebrafish MCT1-4 were cloned from zebrafish. Based on RT-PCR results, zMCT1 and zGLUT4 expressed in brain were chosen for further experiment. Morpholino knockdown experiments provided for the 1st time the in vivo evidence to indicate that the zMCT1 and zMCT4 may be involved in energy translocation and functioning of the developing CNS. 於前人預備實驗中,發現斑馬魚胚胎時期肝醣訊號會於腦部與中樞神經系統區位出現。因此,醣類的分布與在細胞間的傳遞應可視為腦部發育的重要指標。我們以基因體資料庫為工具,研究斑馬魚腦部相關基因異構型分布。目前,我們選殖到數個葡萄糖運輸 (GLUT)、鈉離子/葡萄糖協同運輸(SGLT)與單羧基運輸(MCT)通道在斑馬魚腦部表現,其表現是否與胚胎初期中樞神經系統的發育相關仍未知。經過初步基因分析後,我們決定以MCT 中第一和四異構型作為研究對象,並用Anti-Hu,與PCNA 做神經觀測,將施打反股寡核?酸進行突變操作的斑馬魚,與對照組進行免疫染色分析,以螢光顯微鏡觀察發現:抑制MCT 表現,確實影響胚胎時期中樞神經細胞發育及鰓部細胞分裂;亦可能造成畸形出現。

Palatability Tests on Rana Chalconota Tadpoles

The skin of amphibians can secrete poisons from glands which reduces Palatability or sometimes result in rejection by predators. My research serves to confim the hypothesis that the pair of glands located on the ventral side of Rana Chalconota Tadpoles acts as an anti-presatory structure. Their palatability was measured by the consumption of them at developmental stages intermediate and post-metamorphic by Channa gachua and Giant Dragonfly Nymph. A known-palatable tadpole, Rana malesiana, was used as a control.

Why Spiderman cannot do without his silk?-The effects of dragline silk on jumping performance of jumping spider (Hasarius adansonl)

由於蜘蛛絲複雜的分子結構及產生過程,長久以來一直被視為一個特殊的生物材料(高延展性,高韌性,和高強度),此外,前人研究指出蜘蛛能自己調控絲的性質,並受到環境的影響。然而,大多數的研究多以結網性蜘蛛為主,只有極少數研究著重在探討非結網性蜘蛛,如:跳蛛。本研究中,以安德遜蠅虎為材料,分析跳蛛的跳躍行為,以及探討曳絲在跳躍過程時所造成的影響。我們初步的研究結果顯示: (一)曳絲在跳蛛跳躍過程中,對於安全降落扮演重要的角色,及(二)跳蛛會藉由改變身體的角度來維持身體的平衡。在跳躍過程中,蜘蛛的跳躍速度會因空氣阻力而減少,但是蜘蛛絲的彈性恢恢復力(根據虎克定律)會讓跳蛛跳躍速度更顯著的減少,並藉著身體的轉動與曳絲的作用達到身體平衡。對於一個非結網性蜘蛛是另外一個不可或缺的輔助工具。相對於其他跳躍動物,有絲的跳蛛具備另一項能減緩降落速度的工具以增加降落的安全性。

環境因子影響美洲蜚蠊觸角擺動模式之研究

本研究以攝影紀錄的方式,透過電腦進行影像分析,記錄不同刺激下美洲蜚蠊(Periplaneta americana)的觸角擺動模式,計算出各項觸角運動的參數,以瞭解光線(光刺激或光適應)、震動刺激、喝水與進食對其觸角行為的影響。我們發現在不同因子的刺激下,觸角擺動的模式具有差異,若兩種不同的刺激同時發生,蜚蠊觸角的行為亦具整合性的反應。蜚蠊於不同狀態下(如喝水或進食),對相同的刺激有不同的反應,證明蜚蠊觸角的行為模式,受環境因子與個體狀態調節。透過掃瞄式電子顯微鏡的觀察,也發現觸角具多種感覺毛,且雌雄的感覺毛的分佈與數量具有差異。綜合以上發現,證明觸角除了為敏感的受器,亦為能反映出生理與環境狀態的動器,同時也適合進行發展檢測器的仿生學應用,用來檢測環境中物理及化學因子。The aim of this study is to investigate the different swing motion modes of antennae of American cockroach (Periplaneta americana) by computer-aided Imaging Analysis. The parameters of each swing movement were calculated in order to analyze how light (including light stimulation or light adaptation), vibration, food and drinking water may affect the antennae behavior of American cockroach. It was found that the antennae swing motion modes were significantly different under different types of stimulus. If two different types of stimulus occurred at the same time, the reactions of antennae motion may become conformable. Under different environmental conditions (such as food or water), same stimulus may result in different reactions. The antennae behavior has shown to be significantly affected by environmental conditions and individual physiological status. Through the observation with scanning electron microscope (SEM), it was found that the antennae has many types of sensilla; and the distribution and quantity of these sensilla are significant different between sexes. In conclusion, not only the antennae are considered as the sensitive receptors, but also they are the important effectors to reflect physiological status and environmental conditions. The current model is suitable for the development of specific detectors in the applications of Bionics to detect the physical and chemical factors in certain environments.

攀蜥,攀棲-由台北市內湖金面山區生態因子分析夜晚黃口攀蜥之停棲策略

For this research, the nocturnal perching habits of the lizard, Japalura Polygonata Xantbostona, were examined. Nighttime observations were made from July 2002 to March 2003 in the area along the mountain brook in the south valley of the King-Mien Mountain in Nei-Hu District. The study comprised a series of analysis with discussion of the lizard’s (Japalura Polygonata Xantbostona) perch based on the temperature of living environment and the manner of perch including the dissimilarity between male and female, adults and juvenile lizards in selecting their perch conditions. During the period of study 452 lizards were marked and examined. 163 were female, 168 were male, and 121 were young lizards. The study considered four particulars: (1) orientation, (2) angle, (3) manner of perch, and (4) height of the perch above ground. As for the orientation, most of the lizards chose to perch in an inward (towards the tree) and in an upward direction; the angle of perch was mainly within 1°~ 45° and slanted to 180°. Second, the manner of perch chosen by most of the lizards was holding the stem or trunk by arms. All four groups of lizards exhibited no difference in the orientation, angle and manner of perch. However, male lizards tended to perch at a greater height above ground than the female and juvenile lizards did. The study produced other findings as well: A tendency correlation curve was plotted showing that temperature related with the number of lizards taking perch, and from the curve the optimal temperature of the living environment was determined to be approximately within the range of 19° ~24°. Additionally, there was a relationship between temperature of living environment and the size of lizard and the number of lizards taking perch. A further positive relationship was observed between temperature and the height of perch above ground. Also, the study showed an apparent positive relationship between the temperature of sample living area and the snout-vent length(SVL) of the lizard. Finally, the Japalura Polygonata Xantbostona tended to take their nocturnal perches within a rather fixed home range. 本研究由2002 年7 月至2003 年3 月,於臺北市內湖區金面山南麓溪谷進行黃口攀蜥夜 晚停棲策略研究,以溫度和各項停棲行為進行來分析探討,包括黃口攀蜥的成幼蜥、雌雄蜥 停棲選擇上的差異。 研究期間,共標記到452 隻攀蜥,其中雌蜥163 隻、雄蜥168 隻、幼蜥121 隻。將停棲 的情況分為方向、角度、停棲型態、離地高度四項來分析,在方向上多以朝內、向上為主; 角度多以小角度的1°~45°及180°為主;在停棲型式多以環抱莖枝為主。進一步分析成幼蜥、 雌雄蜥不論在方向、角度、停棲型式的選擇上皆無差異。離地高度的部分則以成蜥及雄蜥的 停棲高度較高;以溫度分析黃口攀蜥的成幼蜥出現停棲隻次、停棲高度、出現停棲攀蜥體型 的相關性,溫度對出現停棲隻次可以做出趨勢相關曲線,估算攀蜥的停棲有一最適宜溫度範 圍約在19~24℃間;溫度與其停棲高度呈現正相關性;每次測得樣區溫度與出現停棲攀蜥平 均吻肛長有顯著的正相關。而黃口攀蜥夜晚婷棲時則會傾向於較固定的範圍內。

蝴蝶眼斑的探討

在眾多的蝴蝶中有不少是具有眼斑。傳統上認為眼斑的功能是驚嚇天敵或欺騙天敵。有關眼斑本身結構的瞭解很少。我們利用臺灣及馬祖產的蝴蝶,分別記錄圖鑑上峽蝶、眼蝶及灰蝶合計 60 種以上,以及鳳蝶幼蟲七種的眼斑特性。記錄的眼斑特性包括數目、組成的色彩結構,以及記錄眼斑在翅的腹面或背面明顯。進一步測暈孔雀峽蝶、台灣波眼蝶、蘇鐵小灰蝶等三種蝴蝶的眼斑和翅面積。眼斑在腹面及背面都有,但以腹面明顯者佔多數,而眼斑數 l 一 7 個都有,在後翅者佔多數。眼斑慕本是由數個同心圓組成,分別為輪廓、眼白、虹彩及障孔。在峽蝶及眼蝶的結構都相當完整,輪廓為褐或深褐,眼白為黃色為主,虹彩都為黑色或深褐色,障孔為白色或淡藍色。在灰蝶的眼斑較不完整,大都輪廓不清晰,眼白的黃色或橙色部份比例高,但都缺少障孔。幼蟲有眼斑成蟲不一定有。鳳蝶的幼蟲( 8 種)都為綠色,其眼斑輪廓黑色,眼白為白色及紅色但明顯比上述成蟲的眼斑之眼白部位要小,而黑色的虹彩都很大。幼蟲的障孔為白色的細線形,我們認為這和立體形狀的幼蟲及成蟲平面翅的差異所造成,在文中也討論到水棲蝶魚的眼斑和蝴蝶眼斑的差異。眼斑和翅面積的相關分析結果變異很大,在統計上正相關及負相關都有。眼斑數目的不定及和翅面積並沒有一定關係,我們討論到蝴蝶的眼斑在不同種類有些可能有求偶生殖上的功能。這方面值得科學家大量投入研究。Quite a few species of butterflies have colorful eyespots on their wings. The main functions of these eyespots were considered to startle or deceive predators by most scientific researchers. In fact, only limited literatures dealt with the basic structure and color patterns of butterfly eyespots. The purpose of this study is to study the basic structure and color patterns of these eyespots. We measured the surface area of eyespots v.s. wings from specimens. From the color plates of Taiwan and Matsu butterfly field guide, we recorded the eyespots either on ventral or dorsal side of wings, and the color patterns for more than 60 species. \r The number of eyespots on wings varies from I to 7 among individuals we checked. Majority of eyespots were found on ventral side of wings. The basic structure of eyespots were formed by I to 3 concentric circles, i.e., outboundary, cornea, iris and pupil . Pupil was not found in certain species. The color in cornea section is yellow and in iris is black or dark brown. The contrast in these two areas is quite prominent just as the contrast showed in warning coloration of after animals. The pupil is either white of light blue. Caterpillars with eyespots were found in Papilionidae, their adult stage were without this character. We checked 8 species of caterpillars, their basic structure of eyespots were similar to other butterflies, with cornea, iris and pupil. The cornea is either red or white color, and the iris is black in colors. The ratio(iris/cornea) is much higher in caterpillar than in butterfly. The pupil is a thin thread shape instead of a tiny spot like the one in butterfly wings. We discussed the difference of pupil between juveniles and adults from the aspect of dimension structure of a subject. In the paper we also discussed the difference of eyespots between butterfly and butterfly fish in the coral reef. Base on the no significant relationship between the surface area of eyespots and wings. We suspect that butterfly eyespots may have another function, such as intersexual selection between males and females beside startling and deceiving predators.\r

半屏山之簷下姬鬼蛛的研究

The spiders, Neoscona nautica, often appear in groups, but individuals have their own sense of territory.They usually spin webs among branches during 6:00~ 8:00 in the evening. When building webs, they will first start with bridges and then spin Y-shaped spokes. Next, they spin meshe of net, silk frame, spokes, spirals and free-zone in order. After finishing webs, they will wait for prey on the free-zone or meshe of net. If they find something inanimate on the web, they will break the spiral attached with the inanimate object that is later removed. If the meshe of net is broken, they will fix it immediately. For them, the time to take webs back is during 2:30~ 6:00 in the morning. Most time they use the first pair and the second pair of legs to take webs back and swallow the webs. Sometimes, they break the spirals by the last pair of legs. The sequence to take webs back is : lower right section, lower middle section, lower left section, upper left section, and upper right section. At last, one thread of bridge will be left. Every early mornings they take webs back and swallow them. The next evening they rebuild webs. Possibly there are two reasons to explain why spiders eat their webs: (1).They swallow webs to get protein. (2).The web threads are easily polluted by dust and humidity and reduce stickiness. The web may also reduce the probability of capturing prey. The body length of them is not related to effective web dimensions. However, the web sizes depend on the width of web-building location. The study shows linear relation among body length, meshe of net and dimensions of free-zone. The linear relation represents that the meshe of net and free-zone have ecological or survival meaning for them. We expect that this study of Neoscona nautica can be helpful to build spider ecological database in Taiwan.簷下姬鬼蛛常成群出現,但個體卻有很強的領域性;常於下午6:00 至8:00 結網於樹枝間,結網時,先以橋絲為出發,織出一Y 形的縱絲,再由此依序織出中空網眼、絲框、縱絲、橫絲、棲息圈,網結好後,簷下姬鬼蛛則在棲息圈或網眼靜候獵物,若發現網上有非生物之異物,則將黏住異物的橫絲弄斷,再把網上的異物丟棄;若網眼被破壞,則會立即修補。收網時間為凌晨2:30 至凌晨6:00,收網時,大部分由第一、二對步足進行收網,偶爾會用最後一對步足將橫絲弄斷,一邊收網一邊將網吞食,收網的順序為:右下、中下、左下、左上、右上,最後留下一條橋絲。簷下姬鬼蛛每天清晨都會收網,並將網吃掉,翌日傍晚再重新結網,其可能原因有兩點:(1)將網吃掉以補充蛋白質。(2)蛛絲容易受灰塵、水氣之污染而減小黏性,降低獵捕功效。簷下姬鬼蛛體長與有效網面積無關,但網的大小視其結網地點寬敞程度而定。體長與網眼、棲息圈面積呈線性關係,表示網眼和棲息圈對簷下姬鬼蛛具有生態或生存意義。我們對簷下姬鬼蛛生態調查之結果,希望能幫助台灣的蜘蛛生態資料庫之建立。

利用自製頻譜儀研究蜜蜂的發聲系統

本研究利用麥克風與相關電腦設備,結合成自製頻譜儀用以觀測多種情況下蜜蜂的聲音頻率。若將蜜蜂的翅膀加以修剪,可測得有不同的頻率,解析頻率發現「翅膀為主要發聲點,但去除翅膀仍有高頻的發聲,且有三種不同的頻率。」將蜜蜂置於不同溫度下,解析頻率得知「一定溫度範圍內,溫度越高蜜蜂發聲頻率越高,反之亦然。」幼期在胸部塗顏料使絨毛無法生長,去除雙翅後,仍有頻率相近的發聲,得知「胸部絨毛不是造成高頻的原因。」靜置5分鐘,待蜜蜂停止發聲後,剪去腳、挑弄蜜蜂會發出高頻,得知「情緒是引起高頻的原因。」將蜜蜂的翅膀加以修剪,分別放回蜂窩口,發現「同一族群蜜蜂可用發聲頻率來辨別同伴。」比較義大利蜂及中華蜜蜂,得知「在多種情況下中華蜜蜂發聲頻率皆較義大利蜂高約70Hz。」因此本實驗之結論並不受蜂種影響。The study, capitalizing on a hand-made frequency divider, the microphone and computerized equipment, observes a variety of frequency of sound given off by bees. We read different frequencies from the apparatus when the bee’s wings were trimmed. Analyzing it, we discover that the bee’s winds are major source of its sound, but it still gives out high-frequency sound when the wings were completely cut off.” After analyzing the frequency, we discover that within a certain temperature range the higher the temperature is, the higher the frequency is, and vice versa. In one experiment, we painted the thorax at its pupal stage to stop the bee from growing fine hairs. Even though the wings had been removed, it still gave out high-frequency sound. We, therefore, conclude that fine hairs on the thorax have nothing to do with the making of the sound. In another experiment, bees were placed in an undisturbed environment until they are completely silent. Then, some of the bee’s legs were cut off, while others were provoked. And all the bees make high-frequency sound in the process. We make a hypothesis that emotion could be the cause of bees’ sound-making. The bees with different trimmed wings were put back to the beehive; the bees can still recognize one another by the different sound frequencies. If we compare A. m. ligustica with A. c. cerana under different conditions, we find that the frequency from the latter is about 70 Hz higher than that form the former.

Eye gone V.S.eyeless決定果蠅複眼發育基因之協同作用與未知調控基因之尋覓

In this study, we try to know how ectopic eye genes: eyeless(ey), eye gone(eyg), twin of eyeless(toy), twin of eye gone(toe) act cooperatively, and look for some unknown genes which affect the function of eyg. First, through human trans gene screening, we find two human genes change the phenotype of ey>eyg into dorsal out-growth when they co-express with eyg (ey>eyg+X). It means the two genes may relate to cell proliferation. Second, by sequencing the insert genes of mutant fly which was found by EP screening, the result shows the site of the insertion is the same as effete (eff) gene. eff translated wrong proteins which differ from functional ubiquitin-conjugating enzyme may be the major cause of the mutant eye . 本研究係探討果蠅複眼異位基因eyeless(ey)、eye gone(eyg)、twin of eyeless(toy)、 twin of eye gone(toe)間的協同作用,並尋找與eyg 有交互作用的基因、突變株。藉由人類基因轉殖篩選,找到兩株人類基因轉殖株,當其與eyg 共同表現時(ey>eyg+X),會改變ey>eyg 的複眼性狀,造成dorsal out-growth,顯示這兩個基因可能與細胞增生有關,此外,藉由EP screening 複眼發生突變的果蠅之UAS 下游基因經比對後,位置與effete(eff)部分契合,推測複眼發生突變的原因是eff 的功能發生異常,致使細胞內蛋白質代謝失常所致。