方格函數—缺塊n×n正方形中總方格數和空缺位置之規律性及函數關係探討
由4x3的方塊中,在缺一方格下計算總方格數的挑戰為起點,我試著探討在缺塊n x n的正方形中總方格數和 任取一個位置方格(x,y) 或 任取出二個橫向位置方格[(x,y),(x,y+1)]、縱向位置方格[(x,y),(x+1,y)] 後之規律性及函數的關係,如下圖所示。並定義在未缺塊的正方形中,總方格數為C(n),且C(n)=Σk2。 研究結果顯示,其函數式經由二種規律性 (A)一般性及 (B)遞迴性 求得,結果如下: 一、 任取一個位置方格(x,y)之總方格數二、 任取二個橫向位置方格 [(x,y),(x,y+1)] 或 縱向位置方格[(x,y),(x+1,y)] 之總方格數
撲克牌遊戲中的數學原理
我們這個作品想討論2個關於次序變化的問題, 第一個是約瑟夫問題的公式. 原始的約瑟夫問題是說, 將正整數1,2,…,n 依序排成一圈, 從1開始1,2,1,2,…報數,不斷去掉報數為”2”的數字, 求出最後剩下的數字, 細節在Knuth教授的著作: 具體數學 (參考文獻[1]) 被完整的得出. 我們參考文獻[2]了解以前這個問題的進展程度, 並試著用我們的方法推導出以下問題的公式. 問題如下: 給定n個數字及正整數L, 在報數規則為”留1去L”時 (從1開始1,2,…,L+1,1,2,…,L+1,…報數, 報數為2~L+1的就去掉, 不斷重複此過程), 在第x次被刪除的數字的公式, 並應用此公式找出不動點 x 滿足: 第x次去掉第x個數字. 在一般的”留 α 去 β “的情況, 我們則推導出一個便於計算的迭代關係.