全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

數學科

雙圓繞行軌跡性質探討

本文探討雙圓軌跡繞行函數𝑆𝑎,𝑏,𝑟(𝑡)≔(cos 𝑎𝑡+𝑟cos 𝑏𝑡,sin 𝑎𝑡+𝑟sin 𝑏𝑡) 的圖形特徵及拓樸性質,利用GeoGebra繪圖觀察圖形模式,並使用微積分等分析學的手法進行證明。 本文主要分為兩個部分進行探討,分別研究變動𝑎,𝑏和變動𝑟造成的現象。第一部分關於𝑎,𝑏的討論發現當𝑎/𝑏為有理數時,圖形將有明顯的週期性結構,因此我們定義並討論此函數的代數週期及幾何週期。當𝑎/𝑏為無理數時,圖形將不再有週期結構,然而其圖形卻會在一環狀區域𝐷𝑟中稠密,並且圖形的補集也會在𝐷𝑟中稠密。第二部分關於𝑟的討論,發現當𝑟在某些特定值時,圖形將產生尖點,並且此尖點可作出通過原點的圖形切線。

雙偶幻方之研究與破解

本研究主要在探討雙偶幻方的解法,我們一開始使用數列交叉擴展法來解雙偶幻方,但後來發現這個方法受到兩個數一組的限制,所以只適用於2n階幻方。為了能涵蓋更多的雙偶幻方,我們試著把改變數字交叉擴展法並與羅伯法結合,創造出一個可以破解所有雙偶幻方的解法,並進行一般式的證明,最後利用斜排特性構造出更多種4n階幻方解法。

截柱錐體

此研究探討在正角柱及正角錐上一刀斬後分割成二部份而形成截面時,觀察其所形成的截面變化,並利用Geogebra、Desmos等電腦軟體模擬繪製,藉此來計算正角柱及正角錐分割成的截面周長與面積,進而推導出其公式及觀察截面大小之變化,以及其與側稜線長的關係。

拈拈有餘——單堆拈必勝策略探討

本文以單堆拈有關的問題出發,討論當給定首項為1的連續數列,接著再就未刪除、刪除不同長度連續或不連續的數列等條件,觀察結果並找出其必勝策略。在刪除特定數列時,發現必勝點的數量與大小與「刪除的數列的首項」和「刪除的數列的長度」有關,最後將其簡化成公式。

對應編號入坐的圓桌錯位問題之研究

會議室圓桌上有𝑛個座位,順時針依序放有號碼1、2、3、⋯、𝑛,共𝑛張名牌。參加這場議會的人都有自己的編號,依序為1、2、3、⋯、𝑛,假設編號1的人一定先進入並坐到號碼2的位子,剩下的人則為亂序進入,先找到自己名牌的位子,如果自己的位子是空的,就直接坐下,如果位子被佔了,則順時針或逆時針找最近的空位入坐,若順時針與逆時針最近的空位距離相等,則順時針入坐(例如編號2到達時,發現自己的位子被坐,順時針距離最近的空位是號碼3,逆時針距離最近的位子是號碼1,則編號2坐到號碼3)。等到前一個人坐下後,下一個人再進入會議室。 依此規則,探討其坐法循環規律、坐法分布、坐法總數,並找出有幾種入座順序對應相同的坐法,以及坐錯位子人數的期望值。

平分天下──網格全等切割之方法數

本作品主要探討在網格上進行全等切割的方法數,並分析其擁有性質,於研究過程中發現當方形網格邊長達到6時,切割路徑會產生「回繞」的複雜情形。因此本次研究由「回繞數」為0的切割路徑討論起,並給予網格分層的定義,依序探討正方形網格、長方形網格、三角形網格及六邊形網格切割成不同等分時的方法數,而後我們再進一步討論正方形網格「回繞數」為1時的全等切割,並利用遞迴式得出切割方法數。 此外在研究中,我們透過排列組合計算出長方形網格在不受回繞限制下的一般式,並嘗試討論立體網格的情形,在增加對「懸空數」的限制下,經計算得出了有趣的結果。