全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

數學科

不變應萬變-旋轉吧!婆羅摩笈多!

本研究主要推廣婆羅摩笈多定理,並探討軌跡方程式與新的不變量。圓錐曲線 內任取一定點F,且在 上以逆時針依序取點P1、P2 、…、Pn( Pk=Pk+n),使得∠PkFPk+1=2π/n,∇k∈ ;接著於 ̅PkPk+1 分別取Mk、Hk滿足 ̅PkMk = ̅ MkPk+1 , ̅FHk ⊥ ̅ PkPk+1 ,稱M1M2…Mn、H1H2…Hn 分別為n邊形P1P2…Pn 的中點n邊形、垂足n邊形。首先,固定一圓,一定點F,我們發現無限多個以F作出的中點n邊形、垂足n邊形的頂點分別會共一封閉曲線,並得出其方程式。第二,以圓錐曲線的焦點F任意作出的垂足n邊形H1H2…Hn的頂點會共一封閉曲線;特別當n=4時,軌跡為一圓。最後,探討垂足n邊形的不變量性質: Σnm=1 1/( ̅FHk2m)與Σni=1 1/( ̅HiHi+12r) 恆為定值,最後推廣到空間中,並得到三維廣義的婆羅摩笈多定理。

切割方程

皮納姆的吃餅精靈是我們偶然間發現的遊戲,此遊戲在正六邊形的棋盤上,兩位玩家輪流取一整排相連的棋,取到最後一個棋的人即獲勝。在正六邊形棋盤下,先手玩家的必勝策略是很明顯的。因此本研究之目標為在等角六邊形棋盤上,對於先手玩家獲勝的策略探討。我們在兩位玩家追求獲勝的前提下,以不同的取棋總步數類型(取棋步數必為奇數步、取棋步數必為偶數步、取棋步數為可奇可偶)來分類盤局中常出現的殘局,進而定義不同的Region Number,並定義AreaNumber來代表盤面上各類殘局數量狀況,結合兩者綜合分析各類殘局數量與取棋步數奇偶性,從而推論出先手玩家掌控取棋步數的奇偶性之策略,找出先手獲勝的方法。

圓形畢露:--利用「cyclos」得到常見基本幾何作圖結果之探討

本作品主要研究一種作圖工具「cyclos」,其規則如下:在平面上,可以以兩點距離為直徑作過此兩點的圓、以不共線三點作圓或在圓上標點。我們盡量避免了使用解析的方法。我們使用了這個工具證明了原題,並進一步作出兩點之中點、三點作三角形之五心以及其他的相關結構的作法。且利用精準繪出長度的方式,導出a¯AB,aϵ{α0+∑∞i=1αi√(i+1) |α0、αiϵQ,αi≠0 for finitely many} 並給出詳細證明。