全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

數學科

免死金牌變因下的汰留問題進階探討

偶然接觸Knuth 具體數學[1]、九死一生[2]與我要活下去[3]後,發現汰留問題實為約瑟夫問題的變形。而科學教育月刊的「免死金牌變因下之約瑟夫問題初探」[5]中引進「免死金牌」設定,提升約瑟夫問題的複雜度與趣味性,勾起我們的好奇心,其中的約瑟夫問題實為汰留問題,且利用遞迴關係遞迴至免死金牌持有者的編號為1號和2號。其中編號1號的規律佳,但編號2號的規律複雜。我們換個方向思考,當免死金牌持有者的編號為奇數時,依淘汰順序來討論;編號為偶數時,利用遞迴關係遞迴至奇數,找出最後存活者編號的方法與通式。進一步在汰留問題及免死金牌汰留問題,找出倒數第k位存活者的編號規則,並將問題推至兩面免死金牌也得到很好的結果。

螺線雙重奏—黃金螺線與阿基米德螺線的交點關係

本實驗研究螺線圈數、擴大倍率對黃金螺線與阿基米德螺線交點數的影響,並預測交點座標。研究發現: 1.透過趨勢線預測圈數變化時的交點數,分別使用第一至第四象限預測,發現四個象限各別形成的趨勢線預測值總和會有較高的準確率。另外,我們也利用兩螺線圈數來推導出預測交點數的公式。 2.透過趨勢線預測兩螺線比例變化時的交點數,當黃金螺線和阿基米德螺線擴大倍率的比值越大,交點數越多。 3.前25個交點距離、夾角及圍成三角形面積所形成的趨勢線,用以預測第26個交點之後的數據,誤差率在5.16 %以內。 4.預測交點座標第26點以後,發現預測越接近x軸的交點,y座標偏差率越高,x座標偏差率越低,反之亦然。

三角形周長分割點交叉連線的截成線段比例研究及其逆命題

在三角形邊長上任取的一點M,探討由M點出發依序把三角形周長分割成四段,經由「孟氏定理」研究三角形周長它的四個分割點交叉連線的截成線段的比例與M點分割三角形的邊長線段比例有何關係式,而且進一步探討它逆命題成立的條件。

蜿蜒曲折

本作品研究「從幾何圖形問題探究如何以最多或最少的路徑轉折次數通過各類幾何圖形的所有中心」,同時解決科學研習雙月刊的問題。主要將該主題分為:研究各類幾何圖形路徑轉折處只能在中心、路徑轉折處只能在頂點與路徑轉折處在中心與頂點給定依序輪流條件時,路徑轉折次數的最大值及最小值與邊格數之關係,更可延伸探討長方體及矩形不同路徑走法組合。再者,由路徑的行進方向發現,在將各類幾何圖形的路徑方向化為代數後,可將路徑過程表示為一個代數列。若代數列相鄰的兩項為相同代數,則該路徑為一直線;若相鄰的兩項為不相同代數,則該路徑為路徑轉折處。比較至代數列的最後一項,即可找出該幾何圖形的路徑轉折次數,並用代數列驗證其一般式。

心之所「向」—多個旋轉中心旋轉任意點的形心性質

從《虛數:從零開始徹底搞懂虛數 少年伽利略1》中的問題作為出發點,主要探討如何透過簡單的方式證明當給定樹的位置後,絞刑臺的位置不影響樁所形成的寶藏位置。在過程中,發現並證明了旋轉角度改變時,樁所形成的寶藏位置之移動軌跡為圓形。其中不論樹的數量和位置如何改變,皆能利用三角形全等和向量的概念證明樁的所形成的寶藏位置不受絞刑臺位置影響。後來我改變旋轉的程序,在n 棵樹的位置任意與旋轉角度任意的條件下,推得寶藏的位置形成兩個正n 邊形,可用於對寶藏位置進行加密與解密。

鳩佔鵲巢巧護食-有限相連環狀排列之探討

本研究旨在探討科學研習月刊62-2期中「鳩佔鵲巢」的問題。首先小斑鳩編號是0,喜鵲編號1、2、3、4、5,沿著圓周排列,探討餵食的順序為選第一隻編號k喜鵲餵食,下一隻被餵食的鳥是由這隻鳥開始,順時針接著沿著圓周數的第k隻鳥。接著編號r喜鵲,再由這隻鳥開始沿著圓周數的第r隻鳥,以此類推。但若餵到編號0斑鳩,會將食物吃光。探討喜鵲n隻,當食物n份、無限多份時,以及當餵食順序為順時針、逆時針交替時,所有喜鵲都吃到食物,其「位置排序」和小鳥數量之間的數學關係。並延伸討論(1)當斑鳩二隻位置相鄰時,(2)當喜鵲吃完一份食物後即飛走時。食物n份、所有喜鵲都吃到食物,其「位置排序」和小鳥數量之間的數學關係。