全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

數學科

好色之徒—塗色方法研究

本研究以排列組合的矩形表格塗色問題為出發點:「k種顏色,m × n的矩形棋盤方格,將上的每一格塗一個顏色,要求任意相鄰兩格顏色不能相同,共有幾種塗色方法?」首先,從1 × n、2 × n表格開始研究,接著往上延伸至3 × n。面臨複雜度的增加時,我們提出新的分類方式,考量各種情況,推導出遞迴關係式後,再以矩陣對角化的方式推導出3 × n塗色公式的一般式。在研究4 × n表格的塗色公式時,我們提出以「行」為單位的分類法來推導其塗色方法數公式,再以矩陣的形式呈現。後續透過觀察原有矩形表格分類,延伸探討頭尾相接的環形表格,推導出1 × n 和2 × n的環形表格塗色方法數公式。

先發制勝!巴什博弈獲勝策略研究

巴什博弈是一種減法賽局,規則為:玩家輪流從總數(P)中減去數值(M),最後使得P=0。我們針對3種不同的遊戲規則進行研究,發現「M的條件限制會改變關鍵數字和必勝樣態」,其獲勝策略如下: 1.若M=1~K,關鍵數字為K+1。當P=N(K+1)時,後手保持P=N(K+1)樣態,必勝;當P=N(K+1)+X時,先手先拿取X,然後轉換身分為後手,保持P=N(K+1)樣態,必勝。 2.若M=1~𝑃/2,關鍵數字為2、5、11、23、47…。當P=6×2n-2-1時,後手「保持P=6×2n-2-1樣態」必勝。反之,先手應拿取P+1-6×2n-2,然後保持P=6×2X-1樣態。 3.若M為質數,則關鍵數字為4。當P除以4的餘數為0時,後手「保持P=N×4樣態」必勝。當P除以4的餘數不為0時,先手利用「同餘互補」的模式,先拿走5或2或3,然後持續保持P=N×4樣態必勝。

「正」「和」我意——正2n邊形頂點連線性質研究

本研究的原題目是在網路上看到證明兩正六邊形頂點連線所形成的長度平方和相等的關係,這份研究將此題推廣到了所有正2n邊形上,而後又推廣到了面積,探討了面積多次方和的關係,最後我們又發現了這些性質在pn邊形上也都成立。 研究中利用了架設坐標系來表示圖形,再利用各種方法簡化算式。文中的證明多用到三角函數的性質以及轉化為複數的表示法以得出結論。 文中最終證明出對於兩個正pn邊形,他們的頂點連線所劃分的區域分組後可形成次方和相等,以及這些連線分組後具有偶數和相等的性質。

Langford數列之探討

Langford數列為一種特殊的排列,本研究旨在探討改變Langford數列的不同參數,進而探討數列的必要條件以及是否存在結構規律,我透過奇偶性以及位移法兩種方法,得到數列各種情況下的存在條件。研究分為五階段:第一階段不改變數列條件;第二階段改變每數出現次數,以上述兩種方法分析其影響;第三階段改變數列最小數,計算並討論何種情況下存在數列;第四階段為整合以上三階段,使數列同時存在三種參數;第五階段為將數列以特定方式進行簡化,並且尋找其規律。

圓內接多邊形西姆松線的延伸思考

本研究是將三角形的西姆松線推廣至圓內接N邊形的西姆松線,已知三角形的西姆松線有孟氏定理,利用數學歸納法可證得圓內接N邊形的西姆松線也有孟氏定理;若只考慮外接圓上的一點P對圓內接N邊形各邊所在直線作垂足,則各邊截線段比值的連乘積也會等於1;已知三角形外接圓上兩點𝐏、𝐏′的西姆松線之夾角,會等於𝐏、𝐏′兩點所對的圓周角。利用四點共圓、兩層西姆松線的關係可證得:圓內接N邊形圓上兩點𝐏、𝐏′的西姆松線之夾角,會等於𝐏、𝐏′兩點所對的圓周角的(N-2)倍;已知若兩個三角形的外接圓相同,則外接圓上一點𝐏對應兩者的西姆松線之夾角為定值,跟𝐏的位置無關。利用四點共圓、兩層西姆松線的關係可證得:兩個N邊形的外接圓相同時也成立。

方圓之間—魔錶3探秘

本研究找出魯比克鐘最少步數解法,發現立柱影響連動範圍、鐘面組合數和同步轉解法: 一、立柱具有唯一性:用於考慮鐘面重疊範圍時,2<=n<=8用鐘面集合的交、差集計算;以阿達瑪矩陣積得到全部鐘面連動範圍。 二、對稱性是決定影響唯一圖的關鍵,考慮「雙重對稱」特性,得到5種唯一立柱組合。 三、組合數與起始狀態數:無對稱軸時,鐘面有n個的組合,組合數為4n個,起始狀態數有4n-1。有1個對稱軸,對稱軸上有a個鐘,共有n個鐘的鐘面組合,組合數為(4n+2n+a)/2個,起始狀態數有(4n+2n+a)/2-1個。 四、鐘面同步轉在考慮立柱唯一性與鐘面對稱性,彼此獨立的鐘面僅有14個,同一指向0的最少步數一定是7步。

次方總和公式的拓展

本研究以推導Sm(n)=(n∑k=1)km 一般自然數m次方總和的遞迴關係為起點,並進一步將其轉化為巴斯卡三角矩陣中的線性方程組。透過使用消去演算法,發現Sm(n)的多項式係數不論m皆由白努利數列控制。接著證明白努利數bk的重要規律,推廣次方總和公式在非正整數的意義。再用次方總和公式來加總任何解析函數(平行加總泰勒級數),整理得Euler-Maclaurin 求和公式,然而此無窮級數通常會發散,透過數種技巧估計餘式項上界獲得最佳近似部分和,用以求巴爾賽問題(Basel Problem)的近似解至小數點後18位。

漢行無阻,蜿蜒曲折

從國立臺灣科學教育館《科學研習期刊》的一道題目中,我們開始研究矩形方格的路徑問題,透過對路徑的分類整理,由簡入繁循序漸進,讓我們有撥雲見日之感。 我們從最少轉折數及其路徑著手,延伸到最多轉折數;從利用樹狀圖討論所有漢米爾頓路徑,到運用螺旋(轉90度)或迴轉策略(轉180度),透過其轉彎次數與轉折數的關聯,推得各個矩形方格的最多轉折數之路徑,並找出最多轉折數的公式。接著,我們分析矩形方格中有缺一塊的最多轉折數,利用路徑趨勢的轉角處與起終點,找出缺塊位置的最多轉折數與未缺塊的差異。 最後,我們試圖解出所有轉折數及其代表路徑,並整理其路徑間的關聯性,但其繁雜度又更高了,期許未來能一一解開這些問題。

自指數列的週期現象

我們稱滿足遞迴關係an = aan−1 的非負整數數列為「自指數列」。本研究探討其循環性質,發現若存在某個非負整數m 使得am ̸= m+1,則數列從某一項開始會進入循環,且循環長度與am 相關。我們推導出如何根據初始條件計算數列的循環長度,並進一步引入週期與最小循環起始項的概念,定義per(s,p) 自指數列。透過研究,我們找出per(s,p) 各項滿足的充要條件,從而判定自指數列的值。最後,我們證明了一個定理,能夠從初始條件找出所有滿足條件的per(s,p) 自指數列。該定理使得求解數列各項的過程比原始方法更簡潔。此外,我們將此定理轉化為演算法,並以Python實作。

機器人的華爾滋—轉動角度的變化與組合對封閉圖形特性之探討

本研究的概念來自於110學年度學測數學的選填題,我們先固定原題的部分變因,探討單一方向並改變單一旋轉角度對圖形特性的影響,並試著求出角數、路徑長、面積等通式;接著嘗試多增加一個旋轉角度形成不同旋轉角度組合和不同方向的旋轉角度組合對圖形特性的影響;最後還試著改變移動距離,找出兩種移動距離組合在旋轉一圈內形成封閉圖形的特性。我們發現一圈內相同旋轉角度組合依規則分割和填補,會形成面積有固定比例的正多邊形;一圈內不論順、逆時針旋轉角度組合,周長和面積公式皆相同;兩圈以上的順、逆時針旋轉角度組合皆會產生多種類型,需要針對各類型分開考慮。