全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

數學科

心之所「向」—多個旋轉中心旋轉任意點的形心性質

從《虛數:從零開始徹底搞懂虛數 少年伽利略1》中的問題作為出發點,主要探討如何透過簡單的方式證明當給定樹的位置後,絞刑臺的位置不影響樁所形成的寶藏位置。在過程中,發現並證明了旋轉角度改變時,樁所形成的寶藏位置之移動軌跡為圓形。其中不論樹的數量和位置如何改變,皆能利用三角形全等和向量的概念證明樁的所形成的寶藏位置不受絞刑臺位置影響。後來我改變旋轉的程序,在n 棵樹的位置任意與旋轉角度任意的條件下,推得寶藏的位置形成兩個正n 邊形,可用於對寶藏位置進行加密與解密。

點心中垂三角形性質之研究

本研究由一題三角形內心與其旁心三角形頂點連線交外接圓所構成三角形面積問題出發,藉由相似形的觀察發現可透過連接頂點與內心作中垂線作圖而成,以此為靈感開始定義點心中垂三角形,創新探究其他形心所構造的點心中垂三角形性質以及與原三角形的面積比,過程中發現三角形五心之間心與心互換的關係,讓我們聯想到如果繼續疊作中垂線,三角形有外、內、垂心共點與共線性質,接著我們延伸至四邊形與多邊形,發現層層之間的圖形有彼此相似與對應邊 平行…等共點、共線性質存在。

角格織網-探討角格矩形中對角封閉區的角格數變化

本研究目的為在相同的等腰直角三角形密鋪而成的矩形中,若從右上角頂點分別往左與往下移動數格,及左下角頂點分別往右與往上移動數格,再分別從左下往右上連接2條直線,並將這2條直線拓寬成一個封閉區域,則此對角封閉區域T會經過幾個三角格呢?先從左下角至右上角的對角線會經過的三角格開始觀察,發現經過的三角格數量與矩形長邊、矩形長、寬邊的最大公因數有關。接著將對角線有規律的拓寬成不同的封閉區域,並將經過的三角格用相異的顏色區分,用逆向思考的方式,把矩形中的三角格總數減去2直線經過的三角格數量,順利找出計算公式。最後我們也用相似的概念順利找出另一方向對角封閉區域H的計算公式,讓整個研究更為完整。

魚龍百變-在轉角遇見小魚畫家

一、本研究 探討 連動桿繪圖機 的 結構 以 及相關原理, 並 改良原有的繪圖機 。 二、順利找出繪圖機桿長的限制。在改變連桿長度以及旋轉半徑等變數的研究中,改變後的變數必須符合桿長的限制才能順利繪製出圖形。 三、找出繪製 圖形的 形狀 也 找出 繪圖 點 B 和 繪圖 點 P 的 極值。 四、探 討出 轉盤的旋轉速度、連桿長度以及旋轉半徑對於繪製出來圖形的影響。 五、改良現有的繪圖機,並且以改變旋轉速度、連桿長度以及旋轉半徑三個變數來繪製出不同的圖形。 六、依照研究的成果來改變繪圖機的變數,順利繪製出想要的圖形。

四角網格利樂棒的探討

此研究主要探討將利樂棒填入不同之矩形及阿茲特克鑽石網格圖形,研究重點放在以二棒、三棒、四棒的單一或任取兩種元件分別探討不同比例的組合,可成功覆蓋圖形格線的情形,研究發現,不同元件可透過擺放位置及棒數計算,利用著色法、窮舉法、遞迴式及數學歸納法等不同方法,分析成功覆蓋及無解原因,加以歸納說明,並將其可擴展之矩形邊長及鑽石階數以一般式呈現。

Wi-Fi收訊範圍—三角形覆蓋圓面積之探討

本研究在探討「利用數個半徑不相等的圓,去完全覆蓋三角形所需的圓面積總和之最小值」,其最小值以三角形的邊長、角度及外接圓半徑去作表示。 首先,我們討論了利用1、2、3 個圓去覆蓋的情形,並分銳角、直角、鈍角三角形去做分類,有完整的結果。並在銳角及直角三角形中,發現有相似的結論。 再者,用多個圓覆蓋時,我們以特殊樣式去作排列,歸納出最小值的規律。

從正方形內接四十五度的三角形談起

本研究源於一道常見的正方形內接三角形的動態幾何問題。我們考慮對角線,先刻劃出兩個動態的△𝐴𝐸𝐹與△𝐴𝑀𝑁之面積比值恆為定值,並且巧妙構造輔助線,利用純幾何方式證明共圓的動態四邊形 𝐸𝐹𝑀𝑁 的圓心軌跡為等軸雙曲線。為了一般化推廣,我們依序設定了等長、半角等條件去探討,實驗了長方形、菱形、直角箏形等,有趣的是,我們發現其兩個三角形面積比為定值的幾何結構是兩組四點共圓,並非等長或半角。值得一提的是,為了刻劃一般化的箏形中的圓心軌跡,我們先建立了菱形的模型,再給出箏形與菱形的對應模型,成功證明其圓心軌跡也是雙曲線。本研究將常見的幾何問題循序漸進地深化,刻劃出內在結構且給出獨特且有趣的成果。

機率的陷阱——伯特蘭悖論

1889年,約瑟.伯特蘭(Joseph Bertrand)展示了以下問題:「圓內隨機一弦大於圓內接正三角形邊長機率為何?」並提出三種解法,而每一種解法都分別得到不同的答案。我們發現其他正多邊形也有類似情況,歸納出其中的規律,並且將伯特蘭的解法推廣為第四種,這種解法可以在範圍內任意產生無限多種機率。接著推廣到立體空間中探討,也同樣發生悖論,這些不一致的情況蓋提議敘述不清所致。

Presidential Candidates

我們擴充”Presidential”遊戲,創發出5×5範圍內的13連方棋盤,走出最大佔地範圍,並以圖論方法分析圖特徵,得到歐拉行跡與合成結果的最長路徑。環圖最大佔地結果18≤𝐴𝑚𝑎𝑥≤22,樹圖𝐴𝑚𝑎𝑥=23。歐拉行跡遇到分叉點會增加選擇,重複踩點;遇到圈則會減少重複踩點的次數;遇到有分支的環則必先走完環才走分支。依據環特徵及分岔點數量,本研究得到圖的最長路徑4≤𝐿𝑚𝑎𝑥≤8。

以三角形各邊生成共頂點正多邊形圖形性質之研究

本研究源於競賽之幾何問題,將其動態化與一般化得到三角形各邊同向生成正多邊形頂點與頂點連線特定的圖形不變性。本研究證明出: 一、兩外延正n邊形與框架正n邊形同相對位置的頂點(分別為Bi、Ci、Ai),與三角形可動頂點K 恆形成平行四邊形BiAiCiK,此為形成不變性之關鍵。 二、當三角形可動頂點之角度為定值θ,則框架角分別為180+180/n-θ及180-180/n-θ度。 三、三角形可動頂點K移動過程中,兩外延正多邊形中以K為起點分別依順時鐘與逆時鐘依序對應之頂點會形成(n-1)組的以底邊中垂線為對稱軸之軌跡,並與K點軌跡形狀相同、大小分別為框架正n邊形第i-3或i-4對角線長度倍數的圖形(若i-3、i-4≦0,則為1倍)。