全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

第65屆--民國114年

探討國中教材之酯化反應連結皂化反應的可行性與原理解析

本研究針對國中教材中酯化反應與皂化反應缺乏連結問題,設計並優化整合性實驗流程。在實驗中,發現皂化後鹽析存在「飽和點」,添加 100 mL 飽和食鹽水,十六酸鈉反應收率 193%,但增至 150 mL 時產量趨緩。為解析此現象,以 DLS 動態光散射技術,結果顯示十二酸鈉、十四酸鈉可形成微胞,十六酸鈉因溶解度低,微胞形成效果不佳。用 DLVO 理論分析粒子間作用力,補充教材的鹽析理論解釋。氫氧化鈉濃度影響方面,2 M 獲高反應收率(十二酸鈉 528%)但含水率較高,8 M 純度較佳但反應收率降低。以氯化鎂鹽析時生成脂肪酸鎂(反應收率 129%),顯示鹽類選擇亦影響最終產物。透過本研究建立了酯化、純化與皂化優化流程,期望為教材提供更具探究與應用性的參考。

頻率與微電流對小球藻生植力的影響

本研究使用磁場和微電流的刺激,分析不同頻率、特定頻率和不同電流強度的微電流對小球藻生長的影響。研究結果發現: 一、特定頻率微電流(7.8Hz、49Hz、528Hz)比無頻率(0Hz)微電流更具促進效果。 二、無意義頻率微電流(100Hz、200Hz、400Hz、800Hz、999.9Hz)對小球藻的影響可能因培養條件和電流強度而有不同的表現。 三、使用較大培養瓶需要較高電流強度,但太高的電流強度(1600μA和3200μA)反而抑制小球藻生長,顯示電流強度不是越大越好! 本次研究觀察到特殊頻率和微電流對小球藻生長的促進效果,為綠色科技應用提供了新的可能性。未來可繼續探討不同頻率對不同藻種生長的影響,並朝向更大規模培育,以及太陽能微電流頻率產生器的應用設計繼續前進。

日跡月軌星羅布-自製天體觀測儀與其應用

國小自然課以量角器搭配窺管觀測月亮,利用竿影間接觀測太陽,描繪天體在天空的軌跡,使用星座盤認識夜晚星空,但觀測器與竿影測量精密度低,操作複雜不直觀。本研究利用窺管與雷射筆,加上手機感測晶片與軟體測量傾斜角,自製精準度極高的「天體觀測儀」,可以同時測量日、月、星三種天體,將測量所得的天體方位角、高度角座標, 利用壓克力半圓球描繪太陽、月亮在天空運行的軌跡,製成 「天體軌跡紀錄半天球」利用試算軟體泡泡圖功能,將測量所得的恆星座標畫成平面星圖。將恆星座標經過周日運動校正,使用弧形刻度游標尺系統,描繪恆星在壓克力球上,製成「星羅布天球儀」。開發 出便利、精準、實用的天體觀測儀,並繪出天體的運行軌跡與分布。

環遊世界三六形

大部分的作品都是在研究五方連塊和它的特性,本研究特別以三角多連塊以及六邊多連塊為出發點來探討。一開始,我們針對連塊可以擴充的數量來分析,隨著圖形擴充,發現連塊數量、連接邊、V字角會影響總擴充數。接著,蒐集三角多連塊、六邊多連塊,研究它們的周長、角的數量、內角和等幾何性質,隨著圖形發展,發現平角、周角的數量會影響幾何性質的表現。 最後在n階三角形、n階六邊形中,拿走最少個數並找出規律拿法,讓指定三角多連塊、六邊多連塊無法放入n階圖形內。未來,我們希望在更多指定多連塊下,找出各種規律拿法,讓n階圖形呈現更多規律之美。

依〝形〞組隊,優勢再現! ~ 六邊形蜂巢堆砌策略再探討

我運用學姐前三年研究的結論,採用初始配對方式,針對共有格數量、角對角數量及各類模組間最佳的組合研究:「在六邊形蜂巢中如何擺放有色六邊形,可求得外圍白色六形總數最少?」且依據模組間的相互關係值,求得K值(包圍的白色六邊形總數)計算公式。 在延伸活動中,我沿用初始配對模式,找出平面長鏈形六邊形的蜂巢堆砌模式,也求得足球這種立體六邊形組合的蜂巢堆砌模式。

最強大腦-我的AI學院

本研究開發AI-RAG智能輔助Moodle次世代學習系統,跨領域結合AI技術與SDGs教育,提升學生提問能力、反思能力及自主學習效能。隨著新課綱強調核心素養導向,學生自主學習與批判思考能力成為關鍵,但教師在繁忙課程中融入SDGs仍具挑戰。AI技術為此提供新契機,本研究透過RAG技術開發智慧學習平台整合Moodle系統,提供即時回饋與學習分析,輔助學生提問與反思,將AI平台導入中學課程分為AI實驗組和GC對照組,比較自主學習效能、反思等能力的成長變化,研究結果顯示實驗組學習成效顯著提升。因此,未來將優化AI回應品質、提升自主學習機制並強化平台資源管理,以進一步完善系統功能。

分角曲線之探討

本研究探討給定平面任意三點A,B,O,滿足∠OPB=∠APO的點P軌跡為何?有什麼性質?我們主要運用複數解析求出曲線方程式,再運用其對觀察到的曲線性質進行證明,我們亦在作品中給出一些幾何解釋。之後我們更進一步更改兩角度之間的關係(如成倍數關係、差為定值等),得到了豐碩的成果。最終還發現此軌跡與其他曲線間的關聯,並說明了背後的幾何本質。

圓內接多邊形西姆松線的延伸思考

本研究是將三角形的西姆松線推廣至圓內接N邊形的西姆松線,已知三角形的西姆松線有孟氏定理,利用數學歸納法可證得圓內接N邊形的西姆松線也有孟氏定理;若只考慮外接圓上的一點P對圓內接N邊形各邊所在直線作垂足,則各邊截線段比值的連乘積也會等於1;已知三角形外接圓上兩點𝐏、𝐏′的西姆松線之夾角,會等於𝐏、𝐏′兩點所對的圓周角。利用四點共圓、兩層西姆松線的關係可證得:圓內接N邊形圓上兩點𝐏、𝐏′的西姆松線之夾角,會等於𝐏、𝐏′兩點所對的圓周角的(N-2)倍;已知若兩個三角形的外接圓相同,則外接圓上一點𝐏對應兩者的西姆松線之夾角為定值,跟𝐏的位置無關。利用四點共圓、兩層西姆松線的關係可證得:兩個N邊形的外接圓相同時也成立。

The study toward the total synthesis of Breitfussin B

本研究旨在開發高效且符合綠色化學原則的Breitfussin B合成策略。Breitfussin B是一種極為稀少的天然產物,可自海洋苔蘚動物Thuiaria breitfussi中分離,分子結構包含吲哚(Indole)、噁唑(Oxazole)與吡咯(Pyrrole)骨架。儘管已有科學家完成其全合成,但現有方法步驟繁瑣,且涉及重金屬試劑,價格昂貴且難以回收利用。因此,本研究致力於開發更高效且環保的合成策略。 目前,我們透過一系列取代與還原反應和Sonogashira偶聯反應成功合成吲哚衍生物6-Bromo-4-methoxyindole,此產物可作為後續關鍵合成步驟的起始材料。此外,在疊氮酮(Azidoketone)至酮醯胺(Ketoamide)的轉化中,我們系統性研究了不同反應條件對產率及區位選擇性的影響。 本研究的成果不僅為Breitfussin B的合成提供關鍵技術支持,也對吲哚類化合物的全合成 具有重要的應用價值。

危機蟲蟲—基於 Inception v3 的害蟲影像辨識與數據優化研究

本研究針對農業害蟲辨識數據集的優化進行探討,旨在提高深度學習模型的辨識準確度。隨著科技進步,人工智慧在害蟲識別中愈發重要,但現有數據集面臨數據品質不良、樣本偏差和錯誤標註等問題,影響模型的可靠性。研究主要分為三個部分:首先分析現有數據集,探討樣本數對分類準確度的影響;其次優化數據集,通過刪除拼接和錯誤圖片、重複圖片等,提升數據質量;最後實際應用模型,開發一套害蟲辨識系統。實驗結果顯示,增加樣本數和改善數據質量顯著提升了模型的準確率,並且開發的介面可協助用戶即時識別害蟲。整體而言,本研究不僅提高了農作物的病蟲 害防治效率,還為未來的害蟲識別技術提供了有價值的參考。