Automatic Destination Coordinating Robot based on Openvino
In this project, we created a function integrated onto a Lingao Chassis that allows the robot to use Slam and Gmapping to successfully navigate its way to the most convenient destination for the user, while avoiding any obstacles on the way, improving the default Gmapping errors.
Autonomous Ecosystem Surveillance Vehicle
As of 2021, there are 368 harmful algae blooms and over 6000 invasive species in the United States of America. Furthermore, it is reported that the United States spends more than 11.1 billion dollars per year on clean-up methods for marine debris. However, there currently isn’t a method to monitor aquatic problems simultaneously, autonomously, and efficiently, creating a capability in the aquatic biosecurity sector. To combat this, we have created an autonomous vehicle that can conduct long-term monitoring of freshwater bodies for up to 60 hours.
Autonomous Ecosystem Surveillance Robot
Our project, the Autonomous Ecosystem Surveillance Robot, aims at closing the aquatic gap in biosecurity measures by including several functions, such as water quality monitoring, aquatic species monitoring, and seabed topology surveillance. Several instances have shown the need for such a system, as demonstrated below. The United States Corps of Engineers completed an electrich fish barrier in the Chicago Sanitary and Ship Canal in 2002, in order to prevent the invasive Asian carp from moving into the Great Lakes. The introduction of the Asian carp into the Great Lakes would be an ecological disaster, as the Great Lakes provide an ideal habitat for the carp to proliferate, choking out native fish species that exist there. This would result in a major loss for the fishing industry in the area. One of the Great Lakes, Lake Erie, suffers annual algae blooms threats, which affect up to 12 million people in the Great Lakes region of the United States and Canada. These algae blooms are caused by runoff pollution, which occurs when rainfall washes fertilizer and manure from farmland into Lake Erie, fueling algae that can make water toxic to humans and animals alike. In addition, there are many existing customs regulations around the world that are set in place to ensure biosecurity of national ecosystems, such as in Taiwan, where it is illegal to bring pork from abroad. Despite this, there still exists a very large gap in biosecurity measures; that of the aquatic nature. Through these three functions, we have the ability to protect local aquatic biodiversity via the ability to detect invasive species, therefore allowing authorities to properly deal with them. This allows less harmful measures to be taken against them, thereby limiting collateral damage to endangered native species. Coupled with the ability to map bodies of water, the Autonomous Ecosystem Surveillance Robot is an extremely potent tool to preserve aquatic biodiversity and to ensure biosecurity of local waters.