CREATION AND RESEARCH OF ECOLOGICAL MATERIALS AS AN ALTERNATIVE TO SYNTHETIC POLYMERS
The research work is dedicated to analyzing the impact of disposable tableware and packages made from synthetic polymers on people and the environment, and the search for ecological alternatives to synthetic polymers used in their production. Various types of disposable tableware and packages, their composition, production technology, harmful effects on the human body, environmental pollution, processing and recycling were studied. The statistics of the use of disposable tableware and packages in Ukraine and the world as a whole, the places of their use were analyzed. Ecological alternatives to disposable tableware and packages made from various natural materials have been studied. A practical study of the use of organic waste and wastepaper for the production of ecological disposable dishes and packages was carried out.
Synthesis of Substituted Pyrrolidin-2-ones and Isoindolines from Donor-Acceptor Cyclopropanes and Anilines/Benzylamines
The development of rapid and efficient synthetic approaches to the bioactive cyclic and polycyclic azaheterocycles is one of the most important challenges in organic synthesis. In this work effective and simple synthetic approaches to polysubstituted pyrrolidin-2-ones 2 and isoindolines 3 from donor-acceptor cyclopropanes 1, bearing the ester group as the one of acceptor substituents, and amines were developed. The γ- pyrrolidone based skeletons and isoindoline ring system is a constituent of many biologically active molecules, both natural and synthetic, and a key component of clinically relevant entities (Fig.1,2) [1,2]. The synthesis of pyrrolidin-2-ones 2 includes Lewis acid-catalyzed opening of the donor-acceptor cyclopropane with primary amines (anilines, benzylamines, etc.) to γ-amino esters, followed by in situ lactamization and dealkoxycarbonylation. The reaction has a broad scope of applicability; a variety of substituted anilines, benzylamines, and other primary amines as well as a wide diversity of donor-acceptor cyclopropanes bearing (hetero)aromatic or alkenyl donor groups and various acceptor substituents, can be involved in this transformation. In this process, donor-acceptor cyclopropanes react as 1,4-C,C-dielectrophiles, and amines as 1,1- dinucleophiles. The resulting di- and trisubstituted pyrrolidin-2-ones can be also used in subsequent chemistry to obtain various nitrogen-containing polycyclic compounds of interest to medicinal chemistry and pharmacology, such as benz[g]indolizidine derivatives. The synthesis of the substituted isoindolines 3 is based on the domino-reaction between donor-acceptor cyclopropanes, bearing in ortho-position of aromatic substituent a bromomethyl group, and different primary amines (e.g., anilines, benzylamines, cycloalkylamines) was developed. The reaction involves the generation of secondary amine followed by nucleophilic ring opening of cyclopropane with amino group. Moreover, this process provided a new practical method for the rapid synthesis of benzo[b]pyrrolizidinone 4 from readily available starting materials.
果蠅(Drosophila melanogaster)的習得性無助表現之研究
習得性無助是個體經多次追求獎賞或逃離困境失敗後產生的一種消極行為表現。習得性無助的行為研究雖多,但對其神經機制的研究卻甚少。 本研究發現273,cha-Gal80>CsC-mCh是適合光遺傳學訓練的果蠅殖系。在白光點獎賞記憶訓練中,使273,cha-Gal80>CsC-mCh果蠅學會白光點視覺訊號代表著獎賞,並發現其白光獎賞記憶能持續7分鐘以上但未達10分鐘。藉已建立白光視覺訊號與獎賞連結的273,cha-Gal80>CsC-mCh,發現重複追求獎賞失敗的實驗組,相較於持續接受獎賞與完成獎賞記憶訓練而無任何操作的對照組,明顯表現習得性無助,本研究亦發現習得性無助個體也表現了活動力、覓食表現及攝食動機的下降。 本研究成功建立高成效的果蠅成蟲光遺傳學習得性無助訓練,並針對果蠅成蟲的習得性無助行為表現進行完整的研究,未來期望本於此訓練方式進行特定腦區、神經群和神經傳遞物之探究,建構果蠅習得性無助的神經網路機制。