AtbZIPs 轉錄因子及其下游基因啟動子的特定序列之研究
Arabidopsis thaliana bZIPs(AtbZIPs)是一群影響層面相當廣泛的轉錄因子,一半以上的 AtbZIPs 基因表現受到光的調控,且近九成的分子機制尚未明瞭,因此探討 AtbZIPs 在植物光調控機制中所扮演的角色將是個有趣的課題。AtbZIP16 與 AtbZIP17 皆被推測會參與光的調控機制,然而迄今少有文獻針對這二個轉錄因子進行更多的研究。因此,我們想藉由細菌單雜合系統(Bacterial one hybrid system)的方法,找出能與 AtbZIP16 與 AtbZIP17轉錄因子結合的 DNA 序列,以瞭解此二轉錄因子調節下游基因表現的分子機制,並探討其在光訊息傳導途徑中所扮演的角色。針對 AtbZIP16 與 AtbZIP17,本實驗分別找到了 7 與10 種可能的結合序列。首先,經由資料庫比對分析,我們發現其序列上帶有的 motifs 功能,主要參與在光調控、環境逆境反應機制、組織發育、賀爾蒙調節、病原菌防禦、鈣離子訊息傳遞等方面,其中又以光調控佔最大的比例。再者,藉由將 motifs 的功能繪製成文氏圖,並與 HY5 (AtbZIP56)做比較,結果顯示,這三個轉錄因子雖同屬於 AtbZIP family,據推測皆受到光的調控,可能參與某些相似的生理調節過程,但都各自具備不同的功能,影響植物體的發育。如此的差異,表示他們有實質上的不同,值得我們更深入的研究。整體而言,本實驗結果除了說明 AtbZIPs 的功能確實廣泛之外,也顯示AtbZIP16 與AtbZIP17 是執行光訊號傳導很重要的調控因子。Arabidopsis thaliana bZIPs (AtbZIPs) is a group of transcription factors affecting a wide range of responses in Arabidopsis. The expression of more than half of the AtbZIPs is regulated by light, and the molecular mechanism for roughly 90% of these AtbZIPs remains unknown. Therefore, the roles AtbZIPs play in Arabidopsis light signal transduction is an interesting topic to pursue. AtbZIP16 and AtbZIP17 have been suggested to participate in the regulation mechanism mediated by light. However, only limited studies for these two transcription factors have been previously performed. For this reason, we intended to determine the DNA-binding sequences for AtbZIP16 and AtbZIP17 via the bacterial one hybrid system to reveal their target binding sites in the promoter region of their downstream genes and to speculate their possible biological function especially in light signal transduction pathway. We have identified 7 and 10 possible recognition sequences for AtbZIP16 and AtbZIP17, respectively. Using motif-finding programs analyses, we found the motifs identified are mainly involved in light and stress signaling, tissue development, hormone regulation, pathogen defense and Ca2+ signaling. Among these regulation pathways, sequences involved in light regulation owns the highest proportion. Furthermore, a Venn diagram was generated to compare functions of genes regulated by AtbZIP16, AtbZIP17 and HY5. Results revealed that, although these three transcription factors all belong to the AtbZIP family and are predicted to be regulated by some similar physiological regulation process (e.g. light), they still possess distict biological functions in plant development. Further studies are thus required to put these transcription factors into their shared and unique biological context. Taken together, the results of this experiment not only indicated light is a key regulation factor for AtbZIP16 and AtbZIP17, but also showed the function of AtbZIPs could be diverse.
金屬的盔甲
Our aim to attend this science fair is to design an instrument that can plat and measure the mass at the same time. In hope of designing a simple, accurate and convenient apparatus, we created an electronic circuit to display our original idea. In the process of constant improvements, we finally accomplished a “Super Mass Plating Gauge”, which can be easily and widely utilized in school teaching. The production of microbalance and the arrangement of electric circuit are the most significant parts in our research. The major components of the “Super Mass Plating Gauge” include a straw, metal clips and our creativity—the well-arranged electric circuit. The idea of microbalance originated from the Internet, but we advanced it by numerous experiments. First, we attached a steel cord to one side of the cathode in the electricity supplier. Next, we fixed the other side to the negative plate. And then, on the end of the negative plate, we tied a metal clip with the metal that will be plated. Eventually a new “plating gauge” was invented. By doing so, we could use this instrument to make our experiments. Our experimental goal is to research how different kinds of metal, time, electrode and voltage can affect the reduced mass on the cathode. We made use of such metal as copper, zinc and silver to carry out the experiments. In the end, by analyzing the results, we concluded a plating formula that can be applied to metal plating.
我們做此科展的目的,是要設計一個可以邊電鍍、邊測量質量的儀器,我們希望這個儀器是簡便、精確、且線路簡單,並且能推廣到教學的器材。經過我們不斷改良,終於完成了「便利質量電鍍器」 。 其中製作微量天秤和線路的配置方法,是本研究的重要部分。微量天秤的主要結構是吸管、鱷魚夾、及線路。微量天秤的構想,是參考以前的科展作品並加以改良,可精準測量到0.00010g,而裡面的線路,則是我們的創意(如圖一) 。只要把電源供應器的正極,接上左右任一鋼條,負極接到容器另一端,並加上一個鱷魚夾,夾上被鍍物,便是一個可邊電鍍,邊測量質量的儀器了!如此一來,我們就能以此儀器來作我們以下的實驗。 我們實驗目的在探討電鍍時不同金屬、不同時間、電極大小及電壓,對正極金屬片所減少質量的影響。 最後,我們推導出一個有關電鍍時正極金屬片質量變化量的實驗公式。為此,我們也要做許多次、許多種的實驗,來驗證我們的公式是否正確,並以我們所學的理論來推論。