Breaking a Caesar Cipher / Vigenère Cipher Encryption for Secure Data Communication
This project had one purpose: creating almost unbreakable encryption by breaking a Caesar – and Vigenère Cipher and getting familiar with how they work. Created a program to encrypt and decrypt messages with a Caesar Cipher and Vigenère Cipher encryption. Breaking these encryptions in these programs will help to identify the factors that contribute to strong and weak encryption systems. A program was created to encrypt messages using Caesar Cipher with a key from 1 to 25 and decrypt messages without knowing the original key by doing different types of “attacks” on the system: a brute force and frequency analysis attack. Created another program to encrypt messages using Vigenère Cipher with a keyword or keyphrase and decrypted messages whilst knowing that original keyword. Tested and compared the two different cyphers when being attacked. This helped identify factors that influenced the strength of encryption and identified the advantages and disadvantages of each Cipher as well as the weaknesses in each attack. Through testing and breaking a Caesar and Vigenère Cipher successfully, multiple factors were identified that influenced the strength of the encryption system. These were used to ensure the new encryption created will be as strong as can be. Comparing the success rate of the different attacks on each Cipher, the similarities, weaknesses and strengths in the Brute Force and Frequency Analysis attacks were found.
Climate Change Brings New Novel Virus
1. Research Motivation Have you ever seen news stating that spring is gradually disappearing from the Korean Peninsula? The characteristics of the four seasons are disappearing due to the impact of global warming. As supporting evidence, droughts and heatwaves continue during the rainy season, and unexpected heavy rainfall occurs during autumn. These abnormal temperature phenomena are greatly affecting agriculture. Crops wither due to untimely cold spells or summer droughts, and the proliferation of bacteria and pests worsens. We need to conduct a thorough investigation and response to such weather phenomena. Carbon is known to be the main culprit behind these abnormal temperature phenomena. We want to explore how carbon affects climate change and understand the implications it has. 2. Research Objectives The consequences of climate change, such as deforestation and rising sea levels, will cause significant damage to society as a whole. This will also have a profound impact on the survival of all living organisms on Earth. Unless industrialization is halted, global warming will continue, making it crucial to gain a proper understanding and find accurate alternatives. The damages caused by global warming are expanding the habitats of mosquitoes, which is expected to have an impact on the spread of mosquito-borne diseases. This can also influence the emergence of novel viruses similar to COVID-19. By examining past outbreaks of diseases transmitted by mosquitoes, we aim to predict and understand such occurrences, as well as explore ways to minimize global warming. 3. Expected Benefits Based on this research, a focused exploration of the ecological impacts of global warming can provide essential data to understand the effects of climate anomalies on us and prepare for them. As these phenomena are expected to worsen over time, it will be possible to develop measures to minimize the damage caused by bacterial infections and agricultural losses.
Evaluation of the Effect of Different Nutrients' Concentration and Composition on Hydroponically Grown Plant
As the world population grows, the demand of food products grows as well and there will be an expected food crisis in the coming years. To prevent those crises, alternative food farming methods must be used. This paper studied two farming systems in different conditions, to compare and find the best, natural and cost-effective system that will cover the current and future demand. The system which can also be used in those areas where soil is less cultivated with insufficient aeration. The first system is the soil-based system (traditional), and the other is hydroponic system. Hydroponic is a technique of growing plants in nutrient solutions with or without the use of an inert medium. Two types of seeds; peas and spinach were observed in both systems over a period of 25 days. In hydroponic plants coco peat was used in place of soil along with the Aegis nutrient. 8 plants were seeded for both types of plants in different systems, conditions, concentrations and pH to conclude the best condition. Growth parameters of all plants including root, shoot and leaf length were observed and recorded daily. On the uprooting, their weight (g), no. of root hairs and used nutrient’s volume(ml) were also recorded. Fungus and insects were seen in the soil plants. The results executed that the growth was maximum in spinach having normal manufacturer nutrient’s spray concentration(1.25ml/625ml) with pH 6 and in peas having normal supplier concentration (5ml/625ml) with pH 4. So, it can be concluded that hydroponic spinach, which is a green leafy plant, can ideally grow at the pH of 6 and peas in slightly acidic condition. Hydroponic planting system has a better growth effect than traditional soil system and this system don’t need any fertilizer, insecticide, pesticide, fungicide and herbicide. While soil plants’ growth was adversely affected by fungus and insects in the absence of these chemicals which can contaminate our food and make it less hygienic for our health. This result achieves the aim of this paper which is finding a planting system and its conditions that can increase the productivity to cover the food demand.
Artificial Intelligence Sensing Technology for Blinds Path Findings
Over 30 million souls live in a world of darkness, a number greater than the populations of both Norway and Sweden combined. Every individual deserves the chance to embark on a journey across our magnificent blue planet. Yet, regrettably, little has been done to assist them. With this project, we’re lighting the way for the blind to explore our beautiful world independently, breaking free from dependence and embracing boundless horizons. In order to put our theory of the project into practice & explore the use of artificial intelligence & computer science, we started by collecting the required materials for our project such as micro-controllers, sensors, a pair of glasses, a laptop, and a miniature camera. Then we moved onto creating the project itself in which the digital software programmed onto the hardware plays the key-role, as the sensors and the camera will record the details and information from the surroundings and send it to the laptop for further processing. The camera would be the backbone of our project, as it will stream real-time footage to the laptop which will be analyzed by an open-source object detection model ‘YOLOv8’ for identifying objects. After finishing the base model of our project, we tested it in-front of objects such as toy cars, bikes, people, etc, and the results of the object-detection would be shown on the laptop. To observe this data, we created a device which has different modules and integrations for different functions. For example, we will use our camera and then stream it onto a laptop so the reading and the data can be processed on the laptop by AI using YOLOv8. As mentioned in the start, many people do not possess the ability to see, to assist them we have thought of this device which uses all readings and its analytical skills to analyze data and help them navigate, travel or simply, live a better life.
King's Power - The Utilization of Agricultural Waste in the Production of Sustainable Dry Cells
The idea of dramatically reducing the cost of the production dry cell, reducing its carbon footprint, and being able to be an alternative to current materials such as biochars really propels the interest of performing this project research. Biochars from durian husk, bamboo and coconut shell are promising alternative chemical materials of the anodes in the dry cell due to their eco-friendly traits and availability in the trophic areas which covers about 40% of the land on earth. Using the technique of pyrolysis, the latest and the best technique to produce a high carbon content biochars, the dry cell uses the potassium hydroxide as the electrolyte and manganese dioxide as the catalysts that make the biochar mixture to produce maximum voltage of 65% from the dry cell sold in the current market. The voltage analysis of the biochar dry cell was done in our school science laboratory and then, characterization tests analysis was carried out on the products from the specific biomass namely the SEM/EDX analysis, at the Material Characterization Laboratory (MCL), Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra 馬來西亞. Based on our research, the biochar obtained from the raw materials (Durian Husk, Bamboo and Coconut Shell) had shown different characteristics. The bamboo biochar had shown the most amount of carbon content which is 86.64% more than the durian husk biochar (72.77%) and coconut shell biochar (65.57%). On the other hand, based on the micrograph, we observed that the durian husk biochar had shown much created pores rather than bamboo biochar and coconut shell biochar. In our study, we found out that the average voltage produced by the three different biochars have shown that Durian Husk char dry cell produced the highest voltage which is 0.97V, more than the bamboo char (0.62V) and coconut shell char (0.73V). In conclusion, the biochar dry cell produced are much cheaper in term of its production as our biochar dry cell uses biomass that are freely available and comes from renewable source of energy, the best ingredient for Green Technology.
In silico Investigation of Cyclosporine Conjugates as Potential Anti-angiogenic Agents via NFAT Inhibition
Calcineurin (CN) activation is a main cause of cancerous tumor formation, one of the leading causes of death globally. Cyclosporine-A (CsA) is a commercially available oral drug that inhibits CN activation; however, low bioavailability limits its use. Nine patented CsA conjugates are potential alternatives to CsA as they have improved cytotoxicities and bioavailabilities but unknown CN-binding affinity. This study aimed to identify the CNinhibition strength and bioavailability of CsA conjugates in silico drug-likeness evaluation via modified Lipinski’s Rule of Five was done on CsA, voclosporin, and CsA conjugates to test bioavailability. The binding affinities of bioavailable compounds were computed via docking to CN in five trials, and the binding affinities were compared. The Water-soluble, RVal, IIA, Alpha, and MeBmt 2 conjugates showed improved bioavailabilities compared to CsA as they passed the drug-likeness screening. After five trials of computational docking to CN, the IIA and RVal conjugates showed improved binding affinities at -15.8 kcal/mol and -15.2 kcal/mol, respectively, compared to CsA at -14.3 kcal/mol. Notably, IIA also showed an improved binding affinity compared to voclosporin at -15.5 kcal/mol. These results suggest that CsA conjugates may be better oral chemotherapeutic drugs than CsA.
Autonomous Ecosystem Surveillance Robot
Our project, the Autonomous Ecosystem Surveillance Robot, aims at closing the aquatic gap in biosecurity measures by including several functions, such as water quality monitoring, aquatic species monitoring, and seabed topology surveillance. Several instances have shown the need for such a system, as demonstrated below. The United States Corps of Engineers completed an electrich fish barrier in the Chicago Sanitary and Ship Canal in 2002, in order to prevent the invasive Asian carp from moving into the Great Lakes. The introduction of the Asian carp into the Great Lakes would be an ecological disaster, as the Great Lakes provide an ideal habitat for the carp to proliferate, choking out native fish species that exist there. This would result in a major loss for the fishing industry in the area. One of the Great Lakes, Lake Erie, suffers annual algae blooms threats, which affect up to 12 million people in the Great Lakes region of the United States and Canada. These algae blooms are caused by runoff pollution, which occurs when rainfall washes fertilizer and manure from farmland into Lake Erie, fueling algae that can make water toxic to humans and animals alike. In addition, there are many existing customs regulations around the world that are set in place to ensure biosecurity of national ecosystems, such as in Taiwan, where it is illegal to bring pork from abroad. Despite this, there still exists a very large gap in biosecurity measures; that of the aquatic nature. Through these three functions, we have the ability to protect local aquatic biodiversity via the ability to detect invasive species, therefore allowing authorities to properly deal with them. This allows less harmful measures to be taken against them, thereby limiting collateral damage to endangered native species. Coupled with the ability to map bodies of water, the Autonomous Ecosystem Surveillance Robot is an extremely potent tool to preserve aquatic biodiversity and to ensure biosecurity of local waters.