The research of Ube anthocyanin characteristics and utilization
Anthocyanin is a water soluble pigment that may appear in various colors such as red, blue, and purple according to the pH. Ube is a fruit in the Philippines that is 3rd of the most cultivated crops. Since Ube contains a lot of anthocyanin, it helps to make the anthocyanin solution. As Anthocyanin reacts to the oxygen quickly it is also used as air pollution indicator because it changes its color according to what substances they are attached to it. To check if the solution reacts to the pollution such as SO2 and NO. When those pollutions are made artificially, examining the intensity of the anthocyanin solution depending on different Mol of the pollutions was able. The power of penetration of lights though the UV-VIS spectrophotometer increases according to the number of molecules of SO2, and also NO. To examine the change of intensity of anthocyanin solution in actual atmosphere, the solutions were exposed outside for several hours. The power of penetration decreases when exposed to an actual atmosphere. The other substances and oxidation were the causes of the changed in color of the solution To facilitate the usage of anthocyanin solution efficiently, it should be preserved, so that the density of specific color will be preserved when used as real air pollution indicator. In order to check what kinds of chemicals can preserve the anthocyanin solution; different kinds of strong acids, strong base, salts, and metals were added to the solution. After getting the data, the characteristics of the chemical which preserved the anthocyanin were scrutinized, than compared to the density of pure anthocyanin solution. To use anthocyanin as air pollution indication as a solid, the Korean traditional paper and cloth were dyed using ube which contains lots of anthocyanin than checked the pixel of red, green, and blue color. Firstly, chose 6 different salts. And then filter and boiled the anthocyanin solution. And then put each different salt in each paper. After that, dried the paper and check the difference of pixel of each paper. As a result, Calcium hydroxide (CaOH2) has highest pixel point. So, using calcium hydroxide to dye clothes is useful and it’s also useful for the air pollution indicator through the experiment. Especially it reacts to Nox and Sox, according to this experiment, it can use for eco-friendly air pollution indicator.
Self Assembly Mechanism of Water Drotlets
這是一系列關於水蒸氣冷凝為極細微小水珠的長程實驗。其中可以分為下列三個階段:第一階段是基礎實驗。將水氣導入至潔淨的光滑表面上(蓋玻片),觀察水珠冷凝的機制。第二階段是在外加磁場及電場作用下,將水氣導入至潔淨的光滑表面(蓋玻片),觀察水珠冷凝的機制。這部分的實驗推翻了一般「水分子是電中性,在電場或磁場中不受影響 」的刻板觀念!實驗所呈現出來的冷凝水珠,不但有明確的自我組成模式( Self assembly pattern)。並且發現:電場會增速凝結水珠的成長(Aggregation),而磁場則會抑制凝結水珠的成長。第三階段是將水蒸氣導引至超聲波的環境中:我們先將超聲波訊號產生器(變頻、定頻)面向於載台旁,再讓水氣導入至潔淨的光滑表面上(蓋玻片),觀察冷凝水珠的機制。當使用固定頻率超聲波波源,我們發現:在超聲波場中水珠的成長會受到抑制,且成長速率會隨著頻率的升高而逐漸減小。第一階段與第二階段的實驗結果與討論已分別發表於2004 年及2005 年的台灣國際科學展覽報告中,本作品將詳述第三階段。 This experiment explores the basic nature of the condensation of water vapor into droplets on the surfaces of cover glasses. This condensation occurs because of the difference in temperature between the water vapor and the cover glass. The condensation process is observed under a microscope. The growth of the droplets can be described as: nucleation, aggregation (piling up) and coalescence. The growth is irrelevant to surfaces or environments. It is found that the temperature difference of moist air over the cover glass do not affect the nucleation size of the droplets in simple plain surroundings; while the change of flow rate does. In general, the coalescence is speeded up at higher temperatures. Furthermore, the effects of electric fields 、magnetic fields and ultrasonic waves are also studied. It can be observed that the size of water droplets become smaller and grow more uniformly under magnetic fields or imposed ultrasonic waves; also, the aggregation rate is decreased by imposed magnetic fields or ultrasonic waves, and it is increased by imposed electric fields. These effects of magnetic fields 、electric fields and imposed ultrasonic waves might be related to the flow conditions and the vibration of surrounding air in the system. This experiment provides the first step in the understanding of the formation of water droplets and their self assembly mechanism in different environment.
Equipping, programming and testing a robot searching for an avalanche transceiver
1. Purpose of the research Because we live in a famous winter sport region in Switzerland, we have been confronted with the problematic of avalanches since we were born. In winter 2011/2012 alone, 179 people were involved in an avalanche accident, of whom 25 died. The most important device for searching and rescuing a buried person is the avalanche transceiver. It creates an electromagnetic field, which can be used to locate a buried person with another transceiver. The most important factor while searching is time: After 30 min. the chance of survival of a buried person has dropped to 40%. Considering the fact that people often make mistakes when they are put under such a big stress, valuable time gets lost. This is where our project comes into play. With an automation of the searching process a fast and reliable search should be achieved. The aim we agreed on for this paper is to develop a prototype of a robot that can find an avalanche transceiver automatically and reliably. To study and optimize the functionality of our robot more easily, our tests have only been performed on flat ground. 2. Procedures The components of an avalanche transceiver with only one transmitting antenna are used as a receiver. With the help of this receiver, the signal of a transmitting avalanche transceiver was analysed. Furthermore, the results were used to evaluate the most suitable search technique. Our robot is based on the “RP6” robot system, which is programmable in the C-language. The signal of the receiver is modified in a way which allows the robot to read it. Based on the results of the signal analysis, a search algorithm is developed. In the final tests the robot was examined as to its functionality and efficiency. Therefore, the robot was positioned at randomly chosen starting points to locate the transmitting device. 3. Data The transmitter could be located correctly in every test. The starting points were successfully located up to 11 m from the transmitter. The search ending points were found at a maximum range of 0.5 m from the correct position. 4. Conclusions In view of the results, the aim of developing an automatic localisation of an avalanche transceiver on flat ground as a prototype is seen as fulfilled. Outside the specified range, the transmitter can only be located unreliably. This is due to the fact that outside that range the signal differential in different directions is too small to be processed by the robot. Our prototype was tested under ideal conditions. Certainly, our robot is still some way from being ready for use in an actual avalanche. Many different questions have not been answered yet or have come up during this project, for example: ‘How should the robot should be applied on uneven terrain?’ or: ‘How should it deal with several buried people at once (multiple transmitted signals)?’ Two aspects of our prototype, the low weight and the low construction costs, however, are particularly favourable.
Universal computing sorting machine
The purpose of the study was to develop and create a semi-automatic multi-purpose sorting and counting machine of standard articles. Currently, there is a problem of equipping industrial enterprises as well as small trade companies and large retailers with computing sorting machines of standard products of a certain shape. We would like to fill this missing link up with a simple, compact and inexpensive device. Procedures The proposed research consisted of a consistent design of a virtual model of the device and its electronic-mechanical implementation. The virtual model is simulated by a computer program "SolidWorks" object, which graphically shows the operation of the future device. In the development of the computing sorting device standard electronic devices and their associated software have been used. The created simplified real model demonstrates the basic principles and characteristics of the proposed device. Data As an example for the implementation of the concept device a computing device for sorting coins, in circulation in Russia has been created. As a basic principle of sorting objects by their geometric and weight characteristics were used. It is important that the device is focused on the correct form of the objects of sorting (balls, rings, coins, regular polyhedrons, screws, nuts, etc). To confirm the effectiveness of the computing device of this type of sorting, a series of tests of counting of objects manually have been carried out . The effectiveness of the device is determined by comparing the time characteristics of manual and automatic sorting. Findings and conclusions As a result of research and work performed, we have concluded that: 1) The proposed device can be used in various industries. (for example, while sorting ball bearings.) 2) Such a computing sorting device may find it's application in various commercial enterprises: to assist cashiers in retail ATMs. 3) Can be used in payment terminals. 4) 4) After a certain modernization of the device it can be used for money encashment.
蟹狀星雲的擴張
By comparing eight different epoch images of the crab nebula taken through 1942 to 2004, we have calculated the expansion velocity of 27 optical bubble features and 60 filaments. The mean expansion velocity of bubble features and filaments is 0.173 arcsec/yr and 0.15 arcsec/yr, respectively. We also estimated the maximum radial velocity of the expansion by analyzing the emission spectrum of the nebula. The maximum radial velocity is 1385.5 km/s. Combining these measurements indicates that the crab nebular is approximately 5870 light year away. In addition, if we assume that the nebula has been expanding at a constant rate, our expansion velocity projected backward indicates the mean date of the supernova event as A.D 1124, more than 70 yrs later than the accepted date of 1054. The result confirms the well-known acceleration in the crab's expansion. Although we have analyzed eight images with a 62 yr baseline, the acceleration still can't be derived from this study. 透過量測由1942年到2004年之間八張不同年代的蟹狀星雲中爆炸後殘骸的位置變化,可以計算出蟹狀星雲爆發的擴張速度。本研究選定了27個包狀物和60個纖狀物,計算出的擴張速度分別為0.173 arcsec/yr.和0.150 arcsec/yr。再透過分析蟹狀星雲的光譜所計算出的徑向速度(radial velocity)為1385.5 km/yr,進而推得蟹狀星雲的距離分別為5430光年和6370光年,平均值為5870光年。 另外,如果假設擴張速度是等速運動,那麼把求得的擴張速度倒推出的爆發日期是在西元1124年,這比中國紀錄中超新星爆發的1054年晚了70年。這顯示出蟹狀星雲的確非等速擴張而是有加速度的狀態,才會造成以等速倒推發生日期時,晚了70年。雖然本研究中分析了相差62年之久的八張影像,仍然無法分析出星雲的擴張的加速度情形。
水滴奇遇記-蓮花效應的真面目
Lotus self-cleaning effect arises because the leaves have the superhydrophobic surfaces. When rain falls onto a lotus leaf, water beads up as a result of surface tension. The water drops promptly roll off the surface, taking every dirt with them. This phenomenon is called the lotus effect. With the aid of a light microscope and an Environmental Scanning Electron Microscope, we observe and describe the morphology of the leaves of Nelumbo nucifera in detail. We successfully observe the real interface between air, water droplets and the papillae of a lotus leaf, and find the evidence of a composite surface that is formed by epicuticular wax crystals and air. These observations improve our understanding of the two-level composite surfaces that are formed by micro-scale papillae, nano-scale epicuticular wax crystals and air. We try the method of using the critical angle of a static drop beginning to roll on inclined surface to evaluate the self-cleaning ability. We then find out that it may be a more precise criterion compared to using the static contact angle for the evaluation of the lotus effect. Literature review shows that the earlier investigation lacks the height(H) and interval(I) of the projections on the lotus leaf surface. A close relationship between the self-cleaning property and the H/I ratio is found. In this study, we present the experimental data of the height and interval of the projections on four different species of plant leaves that all have lotus effect, which may be of great help to technological applications. 蓮花效應是指蓮葉表面具有超疏水性與自我潔淨的能力,當雨水落在葉面,因為表面張力的作用形成水珠,水滴迅速滾離葉面,把灰塵一起帶走。本實驗以光學顯微鏡和環境式掃描式電子顯微鏡觀察蓮葉,詳細描述其表面形態,成功的發現空氣、水滴和蓮葉乳突真實的接觸界面以及表面蠟和空氣構成複合表面的證據。實驗結果可以使乳突、奈米表面臘質和空氣構成的雙層次複合表面更容易被了解。我們嘗試以水滴傾斜滾動臨界角來評估自潔能力強弱,實驗結果比傳統使用靜止接觸角更為準確。表面高度和間距的比值與蓮花效應有很大的關係,查閱文獻顯示蓮葉缺乏這些資料,本研究提出四種有自潔能力的葉子的實驗數據,這些數據應該對科技應用有很大的幫助。