全國中小學科展

未代表出國作品

大自然的飛行家--蝴蝶飛行之初部探討

本研究主要針對蝴蝶之飛行進行探討,研究中主要探討蝴蝶翅膀形狀、身體重量、翅膀面積、展弦比、拍翅頻率及環境溫度對飛行速率之影響,並利用自製之風洞裝置,觀察蝴蝶之翼翅運動,分析通過蝴蝶模型之氣流方向及相關氣動力。研究結果顯示:紋白蝶展翅約4.5~5 cm,平均展弦比(AR)為1.71 ± 0.12,身體重量約為0.06± 0.02 g,翅膀面積約0.0012 ± 0.0003 m2,當紋白蝶身體重量愈重,則翅膀面積愈大(R2=0.9586)。另外,紋白蝶身體重量愈重、展弦比愈小,則飛行速率亦愈快(R2=0.5559、R2=0.4726)。23℃時,紋白蝶飛行速率為1.01±0.24 m/s,當環境溫度愈高(5、16、23℃),則飛行速率亦愈快(y=0.07x+0.7733,R2=0.6967)。風洞實驗發現:蝴蝶會逆風而飛,當風洞的風愈強,蝴蝶翅膀拍動角度愈大,且快而持久,仰角也變大(45 度);蝴蝶翼尖軌跡呈八字形,翼翅運動包含線性平移及旋轉;蝴蝶拍翅時,可在翅上方及前方產生低壓帶,在後方產生高壓帶,以利蝴蝶向前方飛行。另外,翅緣彎曲角度(上反角)愈大,蝴蝶模型之上升高度亦愈高,當上反角60°時,蝴蝶模型之上升高度最高(2.2±0.1cm)。This research approaches the flying ability of butterflies. Our research mainly discusses the weight, aspect –ratio of butterflies, frequency of flapping, and the shape, surface area of butterflies’ wings, and the connection between temperature and flying velocity. More over, we use the wind tunnel which was made by us to observe the movement of butterflies’ wings and analyzed the direction of airflow and aero-elastic which pass through the wind tunnel. Our research shows that Pieris canidia’s length of wings is about 4.5 to 5 cm. The average of aspect –ratio (AR) is 1.71±0.12 . Its weight is about 0.06±0.02 . And its surface area is about 0.0012±0.0003 m 2 . The heavier Pieris canidia is, the bigger its surface area will be (R2 =0.9586). In addition, the heavier it is, the smaller its aspect –ratio will be (R2 =0.5559, R2 =0.4726), and the swifter its flying velocity will be. When it is 23°C, the flying velocity of Pieris canidia is 1.01±0.24m/s. The hotter temperature is (5,16,23°C), the swifter it flies (y=0.07x+0.7733,R=0.6967). Accroding to the detect of the wind tunnel’s experiment , the butterflies will fly on luff. When the stronger the wind of the wind tunnel is, the larger the angles of wing’s flap are. And they are fast and lasting, the elevation also becomes larger (45°). The butterflies’ trochoids of wings mimic the word “eight”, and the movement of wingspan includes parallel movement of linearity and wheel. When butterflies flap, it will amount depression upon and in front of the wings, amounting the high pressure on the back so that butterflies can fly antrorsely. Furthermore, the larger the curvy angle of marginal wings (Dihedral) is, the higher the ascending height of model butterfly will be. When dihedral is 60°, the ascending height of model butterfly is the highest(2.2±0.1 ㎝).

分子篩與過氧化氫感測器

目前市面上缺乏簡單而精準的過氧化氫檢測法,我們參考Fenton Reaction 中,鐵離子對過氧化氫分解的催化模式,利用鐵、鈷、鎳、錳、鋅分子篩,測試他們催化過氧化氫分解反應的效率,從成本、毒性、活化能的多方考量下,選擇以分子篩來固定金屬催化離子,作為我們後續實驗的研究主軸。實驗的初步,我們選擇過氧化氫作為自由基,並著重於過氧化氫的分解反應。利用濃差電池的原理,設計出一套濃度檢測系統,由分子篩作為電極。鑒於粉末狀的分子篩容易流失,我們製備出陶土鐵分子篩,以陶土固定分子篩,並以此作為電極,搭配白金絲,透過能士特方程式,測出過氧化氫的濃度,且藉由電路調控放大倍率,可以直接控制檢測範圍。從實驗結果得知,鐵分子篩在處理過氧化氫的時候,不會有鐵離子溶出的現象,且其催化性在酸性液中可以維持,能不斷的使用,長時間來看,分子篩相當有經濟與環境保護上的價值。We attempted to provide a system for quickly determining the concentration of free radicals. The existing methods or techniques are inefficient or need expensive equipment, therefore, an inexpensive system is being sought for. As a preliminary study, we focused on the decomposition of hydrogen peroxide. Taking the Fenton reaction as reference, we designed a measuring system. This system includes a catalyst containing Fe or Pt ions for catalyzing hydrogen peroxide decomposition reaction. The Fe- and Pt-zeolite were prepared to hold Fe and Pt ions to avoid losing. Because the electrically induced potential would decrease with the decrease in the concentration of hydrogen peroxide, we could measure the concentration of hydrogen peroxide by monitoring the electrical potential. We determined the initial concentration of hydrogen peroxide in water from the initial electrical potential measured through the equation obtained from the calibration line. The practicability of this system has been assured after a series of experiments. We will further develop the technique for measuring other free radicals. We anticipate that this technique will be further developed for measuring other free radicals. Although there are several problems and limitations to be solved and conquered, one thing is for sure: this system is an environment-friendly and cost-effective facility for determining the concentration of free radicals in an aqueous solution.

『亮』出色彩-PLED 的製作

利用化學合成法合成出聚苯胺及MEH-PPV,經過一連串的製程作出高分子\r 發光二極體(PLED),再用I-V 儀量測。實驗中以聚苯胺及MEH-PPV 的薄膜厚\r 度為變因,進行實驗。設定I-V 的電壓值為10V,量測樣品通路上的電流。一開\r 始電壓在跑時,量到的電流都為0A,所得到的圖形為一水平直線;當電壓到達\r 一個值時會向上爬升,但爬到一個階段後圖形呈現鉛直掉落至電流為0A,圖形\r 又恢復成水平直線。過程中看到了薄膜厚度對樣品確實有影響,又鋁電極的厚度\r 不能承受過大的電壓,電壓一大,樣品馬上就燒壞了。\r Abstract:\r Using Chemiccal polymerize PANI and MEH-PPV make through a series\r Polymer light emitting diode(PLED)Produce.then using I-V meter surveies. PANI\r and MEH-PPV change of thick proces.Experiment design I-V volt for meter\r conduction of current of sample .The voltage moving.First meter current is obtaining\r the figure is horizontal when voltage increase to a special value , but increase a while ,\r the current will fall down to zero volt. Figure will go to horizontal that sample will\r change .Thick is different,and aluminum cathode can not suffer too much\r voltage .otherwise will burn.

全民攻笛

本實驗主要是研究閉管駐波的發聲原理。何謂「閉管駐波」?就是一個管子在相同長度下,用不同的力道吹,會有不同音高的聲音產生,這些音被稱為「諧音」。原管長所能發出的最低頻率稱作「第一諧音」,第二低的聲音稱作「第三諧音」,依此類推。在簫的演奏上,只要按住同樣的孔,用較大的力量吹,也同樣會發出較高的音;同樣地,在曲笛的演奏技巧上,有平吹、急吹等分別。為什麼吹越用力,音就越高呢?如果現在拿一個大吸管吹(要裝活塞),你會發現,只有在特定的位置(角度)下,才能吹出聲音。那麼,角度對於聲音也有影囉?這些現象的幕後黑手,就是在管口產生的「渦流」,渦流頻率也會隨著風速而增加;而且,渦流的頻率在特定風速下,會有特定的範圍。經由實驗可以大略歸納出,影響閉管駐波的三個主要變因,分別是「風速」、「風吹角度」、及「吹口至管口的距離」。吹得越急,風速就越快,渦流頻率越高,越易使諧音躍遷;吹的角度越小,越易產生渦流,亦易引發聲音;吹的距離越小,渦流越不?定,越易產生其他的擾動。以上就是本實驗的概略。This project is aimed to fine out how the closed tube can produce a sound. We know what harmonics are. When we hold a big straw and blow with increasing strength (the bottom should be in water), it will generate a higher sound. The high sound is called “harmonic”. The lowest sound it can make is “the first harmonic”, the second lowest sound is “the third harmonic”, and so forth. Likewise, when we press the same key on vertical bamboo flute with increasing strength, it’ll also produce a higher sound. But why do we use the strong air stream to blow the tube to cause the tone to transfer? Now let’s blow a straw flute. You will find that you need to blow in the particular position, and then the sound will be produced. So, is there any relationship between the blowing angle and the frequency? Actually, all these sound are produced by “vortex in the mouthpiece.” The frequency of vortex will increase with the wind speed. Moreover, the frequency of vortex has a range. In sum, the higher the wind speed is , the higher the frequency of the vortex is , and leads to the higher frequency of the sound. The smaller the blowing angle is, the easier the vortex will be produced; the easier the frequency will be made. The smaller the distance between the blowing angle and the frequency is, the more unstable the frequency will be. The above is the most important research in this project.

日光燈下的二道彩虹

某次於學校的科學表演中,見到黑白陀螺在旋轉後會產生顏色的\r 變化,使人印象深刻。文獻上記載此類陀螺稱為“Prevost”圓盤,\r 其色彩產生的原因一般被認為是人眼產生之錯覺。不過究竟為何會有\r 這種錯覺,總令人相當納悶。於是我們請教了老師,不僅做了實驗,\r 也用像機拍攝下來分析,不過令我們感到奇怪的是:如果是眼睛產生\r 的錯覺,又為何能拍出顏色?甚至,在研究的過程中我們意外的觀察到鏤空圓盤內的色塊裡,\r 尚有像水波「波紋」般的條紋出現。這個現象十分奇特,於是我們設\r 計了一系列的實驗去探討這些現象,開始了這次的研究。在研究過程中我們遇到相當大的困難,所幸同伴的程式設計技術\r 卓越。為了實驗也撰寫了許多套色彩分析程式,使得實驗更能得心應\r 手。而我是負責實驗儀器的架設及實驗操作,希望能以分工合作的方\r 式,來完成這次的研究。

聞音起舞一 聲音對跳舞草小葉擺動之影響

跳舞草(Desmodium gyrans) 屬多年生木本豆科植物,其特殊之處在於小葉會對外界的聲音有所感應。本實驗以訊號產生器固定聲音強度,發出2、4、6、8、10 KHz不同聲頻之聲波刺激跳舞草,並以每5秒為單位紀錄小葉擺動角度之變化,分析其擺動週期、擺動幅度等不同的變化。實驗結果為跳舞草小葉之擺動週期與擺動振幅是隨著聲音頻率的增加而呈現sin函數變化之圖形。Desmodium gyrans (Leguminosae) is a perennial woody plant. Acoustic waves can stimulate stipules and cause to oscillation. This experiment used the coroma to immobilize strength, emitted the frequency of 2, 4, 6, 8, 10 KHz acoustic wave to stimulate stipules and recorded the changes of oscillation angle every five seconds. We calculated the oscillation cycle、oscillation span, and analyzed experiment data. The most importance result is that the experiment graphs of oscillation angle and oscillation span with different frequency of acoustic waves display sin function metamorphic diagram.

AtbZIPs 轉錄因子及其下游基因啟動子的特定序列之研究

Arabidopsis thaliana bZIPs(AtbZIPs)是一群影響層面相當廣泛的轉錄因子,一半以上的 AtbZIPs 基因表現受到光的調控,且近九成的分子機制尚未明瞭,因此探討 AtbZIPs 在植物光調控機制中所扮演的角色將是個有趣的課題。AtbZIP16 與 AtbZIP17 皆被推測會參與光的調控機制,然而迄今少有文獻針對這二個轉錄因子進行更多的研究。因此,我們想藉由細菌單雜合系統(Bacterial one hybrid system)的方法,找出能與 AtbZIP16 與 AtbZIP17轉錄因子結合的 DNA 序列,以瞭解此二轉錄因子調節下游基因表現的分子機制,並探討其在光訊息傳導途徑中所扮演的角色。針對 AtbZIP16 與 AtbZIP17,本實驗分別找到了 7 與10 種可能的結合序列。首先,經由資料庫比對分析,我們發現其序列上帶有的 motifs 功能,主要參與在光調控、環境逆境反應機制、組織發育、賀爾蒙調節、病原菌防禦、鈣離子訊息傳遞等方面,其中又以光調控佔最大的比例。再者,藉由將 motifs 的功能繪製成文氏圖,並與 HY5 (AtbZIP56)做比較,結果顯示,這三個轉錄因子雖同屬於 AtbZIP family,據推測皆受到光的調控,可能參與某些相似的生理調節過程,但都各自具備不同的功能,影響植物體的發育。如此的差異,表示他們有實質上的不同,值得我們更深入的研究。整體而言,本實驗結果除了說明 AtbZIPs 的功能確實廣泛之外,也顯示AtbZIP16 與AtbZIP17 是執行光訊號傳導很重要的調控因子。Arabidopsis thaliana bZIPs (AtbZIPs) is a group of transcription factors affecting a wide range of responses in Arabidopsis. The expression of more than half of the AtbZIPs is regulated by light, and the molecular mechanism for roughly 90% of these AtbZIPs remains unknown. Therefore, the roles AtbZIPs play in Arabidopsis light signal transduction is an interesting topic to pursue. AtbZIP16 and AtbZIP17 have been suggested to participate in the regulation mechanism mediated by light. However, only limited studies for these two transcription factors have been previously performed. For this reason, we intended to determine the DNA-binding sequences for AtbZIP16 and AtbZIP17 via the bacterial one hybrid system to reveal their target binding sites in the promoter region of their downstream genes and to speculate their possible biological function especially in light signal transduction pathway. We have identified 7 and 10 possible recognition sequences for AtbZIP16 and AtbZIP17, respectively. Using motif-finding programs analyses, we found the motifs identified are mainly involved in light and stress signaling, tissue development, hormone regulation, pathogen defense and Ca2+ signaling. Among these regulation pathways, sequences involved in light regulation owns the highest proportion. Furthermore, a Venn diagram was generated to compare functions of genes regulated by AtbZIP16, AtbZIP17 and HY5. Results revealed that, although these three transcription factors all belong to the AtbZIP family and are predicted to be regulated by some similar physiological regulation process (e.g. light), they still possess distict biological functions in plant development. Further studies are thus required to put these transcription factors into their shared and unique biological context. Taken together, the results of this experiment not only indicated light is a key regulation factor for AtbZIP16 and AtbZIP17, but also showed the function of AtbZIPs could be diverse.

雙叉桿菌於不同優酪乳中抗氧化性之研究

The objectives of this investigation were to evaluate the growth conditions and the antioxidant activities of fermented black bean soy milk(BBSM) with Bifidobacterium longum B6 and 15708 cultured in four media, namely, ( BBSM ( 100%)+ 1% glucose ), ( BBSM (100%)), ( BBSM (50%) + milk (50%)), (milk (100%)) . These results indicated that; (1) both strains attained viable cell numbers about 7.19~9.53 log CFU/ml after 18 hrs of incubation and were in the order of ( milk (100%))>( BBSM (50%) + milk (50%))> ( BBSM (100%) + 1% glucose)>( BBSM (100%)), (2) both strains in ( BBSM (100%)) exhibited higher pH value ranging from 4.79 to 5.50 , but lower titratable acidity(%) ranging from 0.27% to 0.61% than the three other media after 48h of fermentation, (3) both strains displayed an even smaller tolerance to simulated gastric juice at pH = 2.0 for 3h, especially in ( BBSM(100%)), while in simulated gastric juice at pH =3.0 for 3h had higher tolerance , (4) both strains had high resistance ranging from 72.51% to 92.62% to 0.3% bile solution for 12h, (5) the reducing power of ( BBSM (100%)) was more excellent than that of ( milk (100%)), (6) the scavenging effect of yogurt (BBSM ( 100%) + 1% glucose) on DPPH radicals was significantly higher than that of ( milk (100%)), (7) In general, at ten- fold dilution the chelating effect on copper ions of these four un-fermented media except ( milk (100%)) was significantly higher than that of fermented media with B.longum B6 or 15708. 本研究是探討雙叉桿菌(Bifidobacterium longum B6及15708)在四種發酵基質(【黑豆奶(100%)+1%葡萄糖】、【黑豆奶(100%)】、【黑豆奶(50%)+牛奶(50%)】、【牛奶(100%)】)中的生長情形及抗氧化活性。結果顯示: (一) 兩株菌在四種培養基中的生長菌數大小順序如下:【牛奶(100%)】>【黑豆奶(50%)+牛奶(50%)】>【黑豆奶(100%)+1%葡萄糖】>【黑豆奶(100%)】。 (二) 兩株菌在【黑豆奶(100%)】的pH值比較高於其他三種優酪乳,而最終發酵可滴定酸度比較低於其他三種優酪乳。(三) 兩株菌於pH2.0環境下,在【黑豆奶(100%)】優酪乳中耐酸性很低,而於pH3.0環境下卻有很高的耐酸性。(四) 兩株菌對0.3%膽鹽之耐受性均很高為72.52%~92.62%。(五) 在稀釋10倍的四種基質中,不論發酵前或發酵後的還原力皆以【黑豆奶(100%)】為最高,【牛奶(100%)】為最低。(六) 在濃度稀釋10倍時,【黑豆奶(100%)+1%葡萄糖】對DPPH‧自由基清除率明顯比【牛奶(100%)】高。(七) 在濃度稀釋10倍的四種優酪乳中,除【牛奶(100%)】外,發酵後比未發酵的銅離子螯合率明顯降低。

3D立體建構模擬之研究

現在的市面上,四處充斥著各式各樣的電玩或是3D立體動畫,但是在呈現動畫的\r 時候,依然存在著很多地方的不足,與狀況表現上的矛盾情形!於是令我興起:一個普\r 通的高中學生,是否也有機會運用所學的知識,創造出自己的虛擬實境?\r 我嘗試地寫出各種物體架構的函數,再對這函數圖形所呈現出的立體加工處理,使\r 它能自由的運動,甚至使它能多采多姿就有如我們在現實生活中所看見的一般,有著自\r 己的花紋與圖案!\r 期望在架構完整之後,有一天,我們這些學生可以不再被那些軟體公司牽著走,花\r 大把的錢買電腦動畫中種種的不合理,而可以自己擁有自己的3D 世界!!

Self Assembly Mechanism of Water Drotlets

這是一系列關於水蒸氣冷凝為極細微小水珠的長程實驗。其中可以分為下列三個階段:第一階段是基礎實驗。將水氣導入至潔淨的光滑表面上(蓋玻片),觀察水珠冷凝的機制。第二階段是在外加磁場及電場作用下,將水氣導入至潔淨的光滑表面(蓋玻片),觀察水珠冷凝的機制。這部分的實驗推翻了一般「水分子是電中性,在電場或磁場中不受影響 」的刻板觀念!實驗所呈現出來的冷凝水珠,不但有明確的自我組成模式( Self assembly pattern)。並且發現:電場會增速凝結水珠的成長(Aggregation),而磁場則會抑制凝結水珠的成長。第三階段是將水蒸氣導引至超聲波的環境中:我們先將超聲波訊號產生器(變頻、定頻)面向於載台旁,再讓水氣導入至潔淨的光滑表面上(蓋玻片),觀察冷凝水珠的機制。當使用固定頻率超聲波波源,我們發現:在超聲波場中水珠的成長會受到抑制,且成長速率會隨著頻率的升高而逐漸減小。第一階段與第二階段的實驗結果與討論已分別發表於2004 年及2005 年的台灣國際科學展覽報告中,本作品將詳述第三階段。 This experiment explores the basic nature of the condensation of water vapor into droplets on the surfaces of cover glasses. This condensation occurs because of the difference in temperature between the water vapor and the cover glass. The condensation process is observed under a microscope. The growth of the droplets can be described as: nucleation, aggregation (piling up) and coalescence. The growth is irrelevant to surfaces or environments. It is found that the temperature difference of moist air over the cover glass do not affect the nucleation size of the droplets in simple plain surroundings; while the change of flow rate does. In general, the coalescence is speeded up at higher temperatures. Furthermore, the effects of electric fields 、magnetic fields and ultrasonic waves are also studied. It can be observed that the size of water droplets become smaller and grow more uniformly under magnetic fields or imposed ultrasonic waves; also, the aggregation rate is decreased by imposed magnetic fields or ultrasonic waves, and it is increased by imposed electric fields. These effects of magnetic fields 、electric fields and imposed ultrasonic waves might be related to the flow conditions and the vibration of surrounding air in the system. This experiment provides the first step in the understanding of the formation of water droplets and their self assembly mechanism in different environment.