全國中小學科展

化學

Synthesis of fluconazole analogues with focusing on resistant strains Candida

Fungal infections, particularly those caused by resistant strains like Candida auris and Candida glabrata, pose a significant threat to global health. The widespread use of azole antifungals, such as fluconazole, has driven the emergence of multidrug-resistant strains, undermining the efficacy of existing treatments. These challenges necessitate the development of novel antifungal agents with enhanced activity and reduced resistance profiles. To address resistance mechanisms, we designed and synthesized hybrid molecules combining triazole and thiazolidine-2,4-dione (TZD) pharmacophores. This strategy leverages dual mechanisms of action: inhibiting fungal CYP51, a key enzyme in ergosterol biosynthesis, and disrupting fungal cell wall integrity. The structural versatility of hybrid molecules allows for targeted modifications to enhance antifungal potency, binding specificity, and pharmacokinetics. Using a stepwise synthetic approach, triazole-containing piperazine derivatives were first prepared and coupled with TZD-based carboxylic acids via optimized condensation reactions. The structures of the synthesized compounds were confirmed through advanced spectroscopic methods, including 1D/2D NMR and high-resolution mass spectrometry. The antifungal activity of these hybrids was evaluated in vitro against clinical and reference strains of Candida spp. and Aspergillus fumigatus. Among the synthesized compounds, 6a demonstrated notable activity against Candida parapsilosis (MIC 0.06 μg/mL), comparable to voriconazole. Compound 4b exhibited moderate activity against C. parapsilosis (MIC 1–2 μg/mL) and A. fumigatus (MIC 8 μg/mL). However, most compounds showed limited efficacy against highly resistant strains such as C. albicans 8R and C. krusei. This study highlights the potential of hybrid triazole-TZD molecules in overcoming resistance and improving antifungal efficacy. While promising, further optimization is required to broaden the spectrum of activity and enhance efficacy against multidrug-resistant pathogens. These findings contribute to the growing field of antifungal drug development, emphasizing hybrid approaches as a viable solution for combating fungal resistance.

藥命時刻---天然環境農藥降解與大範圍消除方法研究與討論 Time for No Pesticide on My Plate : Research and discussion on methods for degradation and large-scale elimination of pesticides in natural environment

本實驗研究常見除草劑「固殺草」的降解與檢驗,同時利用各種物質與方法嘗試消除農藥,並尋找消除農藥「固殺草」的最佳方法。 本研究發現:藉由產生「親核取代反應」(Nucleophilic substitution) 能有較佳的消除農藥效果,並且當環境物質含有越多量的胺基酸與維生素時,其消除農藥效果也越好。 根據實驗結果,我們利用環境中易取得的物質,自製簡單、便宜的農藥消除劑,用來協助農民與一般民眾消除農作物上殘存的農藥,並根據實驗結果可以在極短時間內去除99%以上的農藥殘留,期望幫助民眾遠離農藥的毒害。

理論設計與高效率合成三吲哚衍生物應用於癌症標靶藥物 Theoretical Design and Highly Efficient Synthesis of Triindole Derivatives for Targeted Cancer Therapeutics

抗癌藥物的研究一直受到重視,吲哚(indole)衍生物可助抵擋自由基,而二吲哚(Di-indole)衍生物已成為抗癌劑。鈣離子/鈣調蛋白依賴性蛋白激酶 (Ca2+/calmodulin-dependent protein kinase II,CaMKII)之抑制劑為癌症標靶藥物重要研究方向之一,抑制CaMKII可降低各種癌細胞增殖和存活,但目前尚無CaMKII抑制劑藥物。本研究以三吲哚為主架構,發展衍生物作為CaMKII抑制劑,期望可應用於抗癌劑。電腦軟體Discovery Studio2016模擬各種三吲哚衍生物分子模型與CaMKII α(PDB: 2VZ6)之結合能,選出結合能較大之化合物3,並延伸結構/活性(SAR)最佳化,進行一系列高效率藥物合成純化工作。經由送測生物細胞活性,其中先導化合物(lead compound) 3-1對癌細胞之毒性高且對CaMKIIα的抑制效果佳,符合癌症治療上的需求,將繼續最佳化此結構,並進行細胞訊號傳送途徑及動物實驗。

開發回收PET合成UiO-66並應用於催化合成羥甲香豆素

本研究利用乙二醇處理後的聚對苯二甲酸(PET)及氯氧化鋯,以創新的無溶劑方式”solvent-free PET-to-MOF conversion”合成一類金屬有機框架材料(MOF) ── UiO-66(Zr),並發現此材料可用於催化Pechmann condensation、以間苯二酚和乙醯乙酸乙脂合成羥甲香豆素。於190℃之環境下,乙二醇處理6小時的EG-PET可合成出晶型最接近模擬模型的UiO-66晶體;而我們開發的合成方法中,最佳的反應條件為反應物質量比(氯氧化鋯:PET)= 2:1、130℃合成24小時。 對於合成出的UiO-66(Zr),我將其進行了XRD、FTIR、BET、SEM檢測,結果符合UiO-66(Zr)的特徵;唯比表面積僅有約900 平方公尺/克,推測此方法合成出的材料之有機linker數量和一般UiO-66(Zr)有所差異。 對於催化合成羥甲香豆素之反應,我們首先發現UiO-66(Zr)可作為非勻相催化劑參與此反應;且實驗結果顯示,相較於溶劑熱合成的UiO-66(Zr),以本研究的方法所得之UiO-66(Zr)作為催化劑可得到更高產率的羥甲香豆素。

Glass Coloring by the production of Colloidal Hydroxide

When doing an experiment to produce colloidal ferric hydroxide, the bottom of the beaker used was colored in yellow-brown with thin film interference. This phenomenon is well-known, but the cause has not been clearly studied. As a result of the research, the coloration on the bottom of the beaker is caused by β-FeOOH forming a thin film which is chemically bonded with Si-OH on the glass surface. Also, the amount of β-FeOOH depends on the number of experiments, the area of the bottom of the beaker, and the concentration of FeCl3 aq. We found that it can be possible to determine the amount of β-FeOOH from the formula m=knsc and the adhesion constant was found to be 6.8✕10-3 (L/m2). In addition, from machine learning we predicted that the thin film thickness becomes thicker as it moves away from the center.

Application of Carbon Aerogels in Lithium-Air Batteries

One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.

芋頭生物塑膠材質的熱水即溶包研製

2023年聯合國氣候變遷大會(COP28)決議 2050年淘汰化石燃料。2022年聯合國環境大會制定從源頭減少塑膠垃圾的公約。為了回應這些全球目標,本研究利用廢棄芋頭皮的黏性製作生物塑膠,用於泡麵內調味料的熱水即溶包。常溫下為調味料包裝袋,熱水沖泡後即可溶解,成為富含營養的食材。 我們發現有八種配方能夠成功使其成形。其中,成本最低的配方為芋頭:明膠:小燭樹蠟:甘油:水=20:15:9:9:70。該產品在76°C以上的熱水中能夠溶解,第一次裂解時間為8秒鐘以內,之後會完全溶解。該裂解時間y(s)與溫度x(°C)的關係為:y=9.53×10¹¹x⁻⁵.⁹⁸。這使其適合用於泡麵時的熱水溫度,約 80°C以上。 物理性質包括:拉伸強度為0.70kgf/15mm,伸長率為20.4%,密度為1.11 g/cm³,含水率為20.3%。所有配方成分皆可食用,並可溶解於熱水中,適合作為泡麵調味料塑膠包的替代品,有助於減少農產廢棄物的處理量。

探討手性有機硒催化劑合成與性質

研究指出⼿性有機硫催化劑能催化反應合成出⾼立體選擇性的產物,並有相關的研究指出以同族的硒取代⽽成的催化劑也有類似的性質,我們好奇兩者之間催化能⼒的差異處。本研究探討⼿性有機硒催化劑THSeOBn的合成,並將其應用催化形成氮環丙烷化物及環氧化物以探討其性質。本研究發現相較⼿性有機硫催化劑THTOBn催化,其催化形成氮環丙烷反應的dr 值及反應速率皆有顯著的上升,但其催化形成環氧化物的反應儘管反應速率有上升,但是dr值卻下降。最後本研究提出了關於THSeOBn催化形成氮環丙烷及環氧化物的反應機構。

含鐵、鎳之過渡金屬錯合物相變材料研究暨應用研析

量子運算發展日新月異,人類對上網溝通保密的需要與日俱增。市場已有量子資訊加解密所需的金鑰分配系統(QKD)搭配機密資料保險庫(Archive)。然實體金鑰因其安全性,不可或缺。本文探討以製備含鐵、鎳過渡金屬錯合物,利用含 X 光繞射儀等設備檢測、分析其結構與相變。並研析將該錯合物作為分子開關裝置,導入半導體製程,應用於研發上述金鑰之可行性。

二氧化鋯量子點在文物修復與減碳科技應用的潛力

本研究成功以水熱法在 110°C 下合成了約3.90 nm 大小的ZrO2量子點(QDs)。此設計的ZrO2 QDs 能隙為5.03 eV(波長λ < 300 nm),在可見光和紫外光範圍內無明顯吸收特徵,呈現高度惰性和穩定性,適合應用於抗紫外線塗層或顏料。而ZrO2 QDs 表面豐富的氧空位與不同溫度下的CO₂轉化率及CO/CH₄產物選擇性相關。氧空位為帶部分正電的酸性活性位,CO2作電子受體為路易士酸。經氧氣環境加熱處理後的ZrO2 QDs 能提高CO2轉化率且在低溫條件下選擇性較高能促進電子轉移生成CH₄(每分子8e⁻ 轉移)。不同金屬簇(如Fe、Ni、Co和Cu)表面修飾後,Fe-ZrO2 QDs 被證明為最佳催化劑,低溫下更有效促進CH₄生成,且優於ZrO2 QDs。這顯示Fe與ZrO2間存在顯著的強金屬-載體相互作用(SMSI),提升Fe捕捉CO₂分子的能力。此特性突顯ZrO2於碳減排技術的潛力,能有效將CO₂轉化為可再利用的碳基燃料或化學原料,為減少溫室氣體提供實用解決方案。