超聲波應用之研究
                                        在實驗用共振法測量聲音在固體、液體、氣體中的駐波聲場,測量各介質中的聲速。研究超聲波在液體中的空腔效應,鋁箔在不同液體受空腔效應所破損面積與時間略成正比,並發現在水與各濃度的洗潔精水溶液中以水的破損效果最明顯。另外利用1.65MHz 高頻超聲波打入水中,因駐波使水有疏密不同產生狹縫,以雷射通過狹縫有光的繞射花紋產生,由干涉條紋可推估駐波波長。利用閃頻共振法研究光彈材料超聲波場,且發展出以肉眼觀測的裝置,由光彈材料的花紋級數與應力研究中,發現花紋級數與應力成正相關,由聲場中的花紋顏色判斷所受應力大小,並發現超聲波不僅有聲場產生並伴隨熱效應,會影響觀測花紋級數。This project began by studying the fundamental properties of acoustic waves, the relationship between its velocity, frequency and wavelength. Experiments regarding the distribution of sound waves in different mediums, and the induction of resonance in solid, liquid and gaseous materials were conducted. Results from utilizing suspending method to confirm theoretical prediction of sound velocity was accurate, and the sound wave patterns in photo-elastic materials were observed. It was also observed that an aluminum foil would be cut in an ultrasonic cleaning device. The effects of different liquids such as water and detergents on cleaning effectiveness were then experimentally determined, taking into account factors such as viscosity. From reference materials, we learned that ultrasonic waves would create Caritation in liquids. Traditionally, sound waves are expected to exhibit only longitudinal waves, yet in this study it was discovered that the residual\r stresses from resonance in photo-elastic materials also indicate the existence of transverse waves.
                                    
                                
                                    
                                        Energy-Transformation Railway System
                                        There are numerous problems caused by today's railway system. This makes Hong Kong a less attractive place to live in. We have to tackle these problems in order to make Hong Kong a better place. Our model can recycle the energy dissipated in the rail vibration, reuse the sound energy produced by the wheels and the rail by a sound energy conversion system, recycle the wind power in the tunnel by a new type of wind turbine, the Wind Power Generator Underground (WPGU), recycle the thermal energy produced by the air-conditioning system of railway stations by a new system, the Thermal Energy Conversion (TEC). When the rail is bent, the magnets attached to it are also pulled down. When the rail returns to its original position, the magnets attached to it are pulled out of the coils. In both cases, the magnets move against a force. The work done to move the magnets against the force is converted to electrical energy. Also, the bottom of the MTR is designed to be curved. The sound waves produced by the contact point of the wheels and the rail directing towards the bottom of the MTR would be reflected to an elastic material which has a number of magnets attached to it and corresponding number of solenoids are fixed on the ground below the magnets. Sound energy can be converted to electrical energy in this case. When a train approaches or passes through the section that the WPGU is installed, wind is generated. The wind forces the wind turbine to rotate at a certain high speed. The turbine transmits the rotation to the coils in the dynamo, and hence electricity is generated. Heat released from the air-conditioner is absorbed by water. The hot water is then pumped into the system. As the hot water in the pipe flows through the evaporator, liquid ammonia inside will evaporate and flow into the electricity generator. Inside the electricity generator, the gas will push the turbine to rotate and hence electricity is generated. The ammonia gas is then condensed in the condenser and flows back to the evaporator. Hence ammonia is used circularly. In order to explain our principle, we would like to introduce the Lenz's Law, an induced current flows in such a direction as to oppose the movement that started it, the Faraday's Law of electromagnetic induction, the induced electromotive force in a circuit is equal to the rate of change of magnetic flux through that circuit, the Law of Conservation of Energy, energy can neither be created nor destroyed, but can transform from one form to the other.
                                    
                                
                                    
                                        Esglasses
                                        Nowadays, many people are suffering from eye defects and thus eye-glasses play a vital role in their life. On a sunny day, bright light enters our eyes without any adjustment of light intensity, causing discomfort and harm to our eyes. Therefore, sunglasses are right here to satisfy our needs. However, it is very inconvenient for some people who suffer from eye sight problems to bring two pairs of glasses and change them frequently. In order to solve this problem, our Esglasses are designed to combine both glasses together.\r To show the details of the physics theories behind our displays, we would like to illustrate the various components of a liquid crystal as well as the whole structure briefly. The liquid crystal we use is made up of molecules that have no positional order but tend to point in the same direction.