A Novel Selection Process for the Conversion of Conventional Bacteria into Electrotrophs
The redox reactions of bacteria metabolism have been extrinsically studied. These mechanisms allow certain types of bacteria to be able to synthesize extremely valuable extracellular byproducts. Other types of bacteria are able to extract toxic metals from water by donating electrons directly to those aqueous metal ions, thus turning them into solid precipitates. However, the problem of these microorganisms is that their efficiency rates and production speeds are exceptionally low. This study focuses on the properties of electrotrophs, which are bacteria that can feed on pure electrons directly from an electrode (Rabaey et al 2010). Compared to normal organic-feeding bacteria, electrotrophs direct the majority of the electrons obtained to the production of metabolic byproducts (Nevin et al 2010). Therefore, when electrotrophs are employed in bioelectrochemical systems (BESs) their metabolic redox reaction efficiency rates are dramatically increased. This makes it possible to produce large quantities of valuable compounds such as hydrocarbons, plastics and medicine or efficiently remediating the environment (He et al 2016). Moreover, the usage of electricity as an energy source compared to conventional organic substrates is immensely cheaper (Rabaey et al 2010). However, not all bacteria are electrotrophs nor do all electrotrophs have favourable metabolic traits. Thus, there is a need for a novel procedure to turn conventional bacteria into electrotrophs which is a crucial step to making the BES an aggressive competitor in the sustainable energy industry.
Bioplastic - The Future is Degradable Plastics. Investigating Biodegradation of Polyhydroxybutyrate Bioplastic by 紐西蘭 Soil Microorganisms
The rate and production of conventional petroleum based plastics is unsustainable and not eco-friendly. Plastics often end up in marine environments and can take hundreds of years to decompose in landfills. According to Statistica, in 2015 alone, global plastic production was approximately 322 million metric tonnes and is projected to increase in the future. PHB bioplastic or Polyhydroxybutyrate is both biologically produced and biodegradable and can serve as a viable alternative to conventional plastics. But can it be broken down by soil microbes within a reasonable time frame? I have set out to answer this question. My aim was to isolate and analyse microorganisms from the Rotorua area that are capable of degrading Polyhydroxybutyrate (PHB) bioplastic . I isolated PHB degrading microorganisms from Rotorua soils by culturing on an agar based mineral salt media supplemented with PHB powder (MSM PHB agar). Samples were taken from Mount Ngongotaha and Te Puia geothermal soils as well as Okareka, termite frass and termite guts. One isolate from the Te Puia sample (labelled G2) was found to successfully degrade PHB powder. After isolation and purification of the G2 isolate, it was cultured on a range of media types to examine properties exhibited under differing nutrient conditions. Multiple organisms were found to be involved in the degradation of PHB bioplastic and work together symbiotically, this included bacteria and fungi which was identified as penicillium. The sample isolated from Te Puia soils (site 2 – G2Clear) in the Rotorua environment was found capable of competently degrading PHB, clearing 8% of PHB after 26 days. The G2Clear isolate is a mixture of bacteria and fungi working in an endosymbiotic relationship to degrade PHB and are unable to successfully degrade PHB individually. It is through the secretion of an extracellular PHB depolymerase enzyme that PHB is degraded, conforming with my hypothesis. This proves that PHB bioplastic is a viable alternative to conventional petroleum based plastics as PHB can be relatively quickly broken down by soil microorganisms.
Antibacterial Properties of Mānuka
Antibacterial Properties of Mānuka Mānuka (Leptospermum scoparium) is a native 紐西蘭 plant that has long been used by indigenous Maori for its medicinal and therapeutic properties, yet is relatively unknown to science. Many of our native species may contain novel compounds with practical applications in our lives. Research indicates that mānuka has anti-microbial, anti-fungal, herbicidal, insecticidal and anti-bacterial properties, and suggests that compounds similar to Grandiflorone (ß-triketones) cause these effects. This project investigates the antibacterial properties of mānuka leaves, using the bacteria Photobacterium phosphoreum for biological testing. With the recent rise in multidrug-resistant bacteria, it is now more vital than ever to utilize traditional knowledge to inform research and development of innovative new antibiotics, antimicrobials and similar biologically important compounds.