全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

數學科

四方輻輳-探討正方形加權費馬點之位置變化

本研究主要在探討費馬點在正方形四頂點具有加權的狀況時,尋找隨著加權情況變化而移動的費馬點位置。我們從原費馬點研究三角形一般加權情況開始發想,將費馬點研究推廣至由正方形加權情況下的特殊化結果,利用加權的對稱性,來解得不同加權情況下的費馬點位置,也利用偏微分和物理觀點證明了一般正加權情況下的唯一性。最後,我們將研究推廣至負加權的情況,並找出特定加權條件下,存在費馬點的條件。

knight探城祕

在探究騎士過城堡的棋盤格遊戲中,我們發現棋盤設計巧妙,玩家可以從任意棋盤格出發,利用西洋棋中騎士的L形走法,跳過棋盤上的每一格且僅能跳一次,最終返回起始點以通過城堡。本研究的目的是在4x4棋盤格中,找出符合遊戲規則的棋格圖形。首先探討3x3棋盤中任意兩格與其路徑圖形之間的關係,發現了路徑與圖形間的相對關係,將此發現應用於4x4棋盤,並以「路徑探戡法」通過Python程式分析生成棋盤格圖形的路徑,刪除不符合遊戲規則的圖形,合併重複、對稱和旋轉對稱圖形。最後篩選出的棋盤格圖形,依棋盤格子數量分類:8格的有1個、10格的有8個、12格的有9個、14格的有1個,總共19個符合遊戲條件的棋盤格圖形。

衍伸三角形之有向面積性質探究

2021年Todor Zaharinov在數學雜誌上提供了一道幾何證明題,題目為「給定任意三角形𝐴𝐵𝐶與動點𝑃,以𝑃點和三角形邊(或其延長線)上的點,構造三個旁接三角形,並使得𝐴、𝐵、𝐶點分別為其重心,再取旁接三角形的頂點構造兩個 衍伸三角形,證明衍伸三角形恆面積相同」。 我們的研究在原題構造中發現了新性質,並創新將其中的「重心」更換為其他形心構造與剖析,並關心衍伸三角形的面積關係,更探討滿足特殊條件時,動點 𝑃 在平面上的軌跡。 值得一提的是,當以三頂點為旁接三角形的「垂心」時,滿足衍伸三角形的有向面積的和與差為0的𝑃點,其軌跡構成外接圓及著名的Kiepert雙曲線,這是一大亮點。

「積」「極」向上

本研究旨經「阿基米德積木」堆疊操作與研究,透過「角度」、「線段」等不同變因進行演練推算,探索與堆疊高度最大值的相關。 在研究堆疊螺旋塔的過程,發現到積木交疊處介於6

從《虛數:從零開始徹底搞懂虛數 少年伽利略1》中的問題作為出發點,主要探討如何透過簡單的方式證明當給定樹的位置後,絞刑臺的位置不影響樁所形成的寶藏位置。在過程中,發現並證明了旋轉角度改變時,樁所形成的寶藏位置之移動軌跡為圓形。其中不論樹的數量和位置如何改變,皆能利用三角形全等和向量的概念證明樁的所形成的寶藏位置不受絞刑臺位置影響。後來我改變旋轉的程序,在n 棵樹的位置任意與旋轉角度任意的條件下,推得寶藏的位置形成兩個正n 邊形,可用於對寶藏位置進行加密與解密。

貓鼠終極戰

在這次的研究中,我們在書上看到了一個問題,是一道有關於在棋盤上,貓和老鼠不能看到對方的問題。我們先研究這個題目中棋盤大小、貓和老鼠數量的規律,我們從1×1一路研究到了8×8,並且試著找出在不同棋盤大小的遊戲中,要有幾隻貓才能讓老鼠的平均數量接近2隻,之後我們將 題目設計成對戰的遊戲。 我們首先設計了一個棋盤大小是6×6的桌上型遊戲,並且修改過幾次規則。後來學習了程式設計,把遊戲改到電腦裡遊玩,我們使用scratch寫程式來製作遊戲,並且把原本6×6的棋盤擴大改成了8×8的棋盤。我們在試玩的過程中,又再次把一些不公平的遊戲規則修改了一下,最後我們和同學一起試玩遊戲,製作出了屬於我們的「貓鼠終極戰」。

魚龍百變-在轉角遇見小魚畫家

一、本研究 探討 連動桿繪圖機 的 結構 以 及相關原理, 並 改良原有的繪圖機 。 二、順利找出繪圖機桿長的限制。在改變連桿長度以及旋轉半徑等變數的研究中,改變後的變數必須符合桿長的限制才能順利繪製出圖形。 三、找出繪製 圖形的 形狀 也 找出 繪圖 點 B 和 繪圖 點 P 的 極值。 四、探 討出 轉盤的旋轉速度、連桿長度以及旋轉半徑對於繪製出來圖形的影響。 五、改良現有的繪圖機,並且以改變旋轉速度、連桿長度以及旋轉半徑三個變數來繪製出不同的圖形。 六、依照研究的成果來改變繪圖機的變數,順利繪製出想要的圖形。

機率的陷阱——伯特蘭悖論

1889年,約瑟.伯特蘭(Joseph Bertrand)展示了以下問題:「圓內隨機一弦大於圓內接正三角形邊長機率為何?」並提出三種解法,而每一種解法都分別得到不同的答案。我們發現其他正多邊形也有類似情況,歸納出其中的規律,並且將伯特蘭的解法推廣為第四種,這種解法可以在範圍內任意產生無限多種機率。接著推廣到立體空間中探討,也同樣發生悖論,這些不一致的情況蓋提議敘述不清所致。

蜿蜒曲折

本作品研究「從幾何圖形問題探究如何以最多或最少的路徑轉折次數通過各類幾何圖形的所有中心」,同時解決科學研習雙月刊的問題。主要將該主題分為:研究各類幾何圖形路徑轉折處只能在中心、路徑轉折處只能在頂點與路徑轉折處在中心與頂點給定依序輪流條件時,路徑轉折次數的最大值及最小值與邊格數之關係,更可延伸探討長方體及矩形不同路徑走法組合。再者,由路徑的行進方向發現,在將各類幾何圖形的路徑方向化為代數後,可將路徑過程表示為一個代數列。若代數列相鄰的兩項為相同代數,則該路徑為一直線;若相鄰的兩項為不相同代數,則該路徑為路徑轉折處。比較至代數列的最後一項,即可找出該幾何圖形的路徑轉折次數,並用代數列驗證其一般式。

n倍等角差線

本研究從分析產生n倍等角差線的聯立方程式與參數式出發,首先從觀察圖形的變化及計算,得到不同初始條件下的圖形分類,進一步探索其漸近線、輻射點的特性,並解決文獻中的稠密性猜想。 本研究再考慮n倍等角差線經旋轉、鏡射、反演後的圖形,討論封閉圈數,並求得分割區域數。並且得到當n為有理數時,能利用圖形逆推n值。