孟氏定理之角元形式及其逆定理在凸多邊形之探討及其應用
此作品是針對孟氏定理比例線段形式之逆定理,角元形式和它的逆定理的探討,嘗試將其推廣到凸 n 邊形。把角元形式推廣到凸 n 邊形,我們用三角形面積公式及比例線段形式,解決此問題。為了使研究更完備,探討其逆定理時,意即當滿足比例線段形式或角元形式時,n 點能否共線?但我們發現它未必成立,而且我們也在奧林匹克數學的幾何問題一書中所提到三角形之孟氏逆定理發現它的證明錯誤,我們給了反例,並且加上條件,運用相似形及三角函數的基本性質證明出兩種不同形式之孟氏逆定理。對於本作品,也給了一些應用,如著名幾何問題─斯坦納(Jakob Steiner, 瑞士)定理,運用角元形式之結果給了一種新證法,而且也用比例線段和角元形式來解決幾何競賽題及角度問題。