黑格連線
黑格攣線是一個用有方向性攣線攣接平面或蒚體棋盤中黑格的動作。以平面棋盤為例,在給定的m× n 黑白格相間的棋盤(其左下角為黑格),由左下角開始以連線將共點黑格連接,若所有黑格都能被連接,則稱(m,n)符合黑格連線條件。本研究主要目的是以推理方法導出當(m, n)符合黑格連線條件時, m,n 之間的關係,研究初期猜測當gcd(m ?1, n ?1) = 1時,數對(m,n)符合黑格連線條件。為達上述目的,研究中需探討棋盤中的黑格總數、連線在棋盤上重複通過的黑格數量及重複通過的次數,以及在如何的情況下可以使連線通過棋盤上所有的黑格,最後驗證研究初期之猜測成立。本研究預期推展到高維度棋盤符合黑格連線的條件。目前發現此推廣面臨高維度中點、線、面、高維度體個數及相互連接的問題,由實例進行黑格連線後,猜測結果與二維、三維相仿(各維度的格數減一之值必須兩兩互質)。另外,還有一個研究推廣的思考方向:mxn棋盤中,將連線視為繩,連線第二次經過黑格時,依序向前一條連線上方、下方通過,最後將黑格相連後,繩拉緊所能產生的繩結數。